Abstract
Studies on the association between maternal hemoglobin (Hb) concentration and adverse pregnancy outcome have been inconsistent. Many studies have shown the impact of Hb concentration on pregnancy outcomes in adult women; however, it is not revealed in adolescent pregnant women.
Objectives: The aim of this study was to examine the effect of Hb concentration on birth outcomes in pregnant adolescents as a high-risk group. Patients and Methods: In this cross-sectional study, 312 healthy and nonsmoker adolescent pregnant women with gestational age (GA) of 37-40 weeks were chosen by random sampling, and were followed until delivery.
A complete history was obtained from women. In addition, clinical examination and Hb test were performed. After birth, the associations between Hb concentration during pregnancy and birth outcomes were investigated. Statistical analyses were performed using SPSS software by t-test, chi-square and ANOVA.
Conclusions: Abnormal Hb concentrations increase the risk of adverse birth outcomes such as low birth weight (LBW) and low Apgar scores in pregnant adolescents, so intensive care is recommended for this group of pregnant women.
Keywords: Maternal, Hemoglobin, Birth, Weight.
References
1. Bodnar LM, Siega-Riz AM, Arab L, Chantala K, McDonald T. Predictors of pregnancy and postpartum haemoglobin concentrations in low-income women. Public Health Nutr. 2004;7(6):701–11.
2. Rasmussen S, Bergsjo P, Jacobsen G, Haram K, Bakketeig LS. Haemoglobin and serum ferritin in pregnancy--correlation with smoking and body mass index. Eur J Obstet Gynecol Reprod Biol. 2005;123(1):27–34.
3. Fraser D, Cooper MA, Myles MF. Myles Textbook for Midwives.Edinburgh; New York: Churchill Livingstone; 2009.
4. Ziaei S, Mehrnia M, Faghihzadeh S. Iron status markers in nonanemic pregnant women with and without iron supplementation. Int J Gynaecol Obstet. 2008;100(2):130–2.
5. Levy A, Fraser D, Katz M, Mazor M, Sheiner E. Maternal anemia during pregnancy is an independent risk factor for low birthweight and preterm delivery. Eur J Obstet Gynecol Reprod Biol. 2005;122(2):182–6.
6. Gonzales GF, Steenland K, Tapia V. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am J Physiol Regul Integr Comp Physiol. 2009;297(5):R1477–85.
7. Chang SC, O'Brien KO, Nathanson MS, Mancini J, Witter FR. Hemoglobin concentrations influence birth outcomes in pregnant African-American adolescents. J Nutr. 2003;133(7):2348–55.
8. Shobeiri F, Begum K, Nazari M. A prospective study of maternal hemoglobin status of Indian women during pregnancy and pregnancy outcome. Nutr Res. 2006;26(5):209–13.
9. Ren A, Wang J, Ye RW, Li S, Liu JM, Li Z. Low first-trimester hemoglobin and low birth weight, preterm birth and small for gestational age newborns. Int J Gynaecol Obstet. 2007;98(2):124–8.
10. Ziaei S, Janghorban R, Shariatdoust S, Faghihzadeh S. The effects of iron supplementation on serum copper and zinc levels in pregnant women with high-normal hemoglobin. Int J Gynaecol Obstet. 2008;100(2):133–5.
11. Macedo A, Cardoso S. [Routine iron supplementation in pregnancy]. Acta Med Port. 2010;23(5):785–92.
12. Anemia Cutoffs during Pregnancy. CDC Prevention Guidelines Database. Atlanta, GA: Centers for Disease Control and Prevention; 2007. Available from: http://wonder.cdc.gov/wonder/prevguid/ p0000169/p0000169.asp#head003000000000000.
13. Patra S, Pasrija S, Trivedi SS, Puri M. Maternal and perinatal outcome in patients with severe anemia in pregnancy. Int J Gynaecol Obstet. 2005;91(2):164–5.
14. Goonewardene IM, Deeyagaha Waduge RP. Adverse effects of teenage pregnancy. Ceylon Med J. 2005;50(3):116–20.
15. Adebisi OY, Strayhorn G. Anemia in pregnancy and race in the United States: blacks at risk. Fam Med. 2005;37(9):655–62.