References
1. Hug C, Wang J, Ahmad NS, Bogan JS, Tsao TS, Lodish HF, 2004 .T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. ProcNatlAcadSci USA 101: 10308-10313.
2. Trujillo ME, Scherer PE., 2005. Adiponectin journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med; 257:167–175
3. Goldstein BJ, Scalia R. 2004.Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinal Metab; 89:2563–2568
4. K. Rabe, M. Lehrke, K. G. Parhofer, and U. C. Broedl, 2008.“Adipokines and insulin resistance,”MolecularMedicine, vol. 14, no. 11-12, pp. 741–751.
5. Thomas, A.C., G. Armando and Z. Bernard, 2003. Diabetic retinopathy and diabetic macular edema. Diabetes Care, 26: 2653-2664
6. Donald, S.F., L. Aiello, T.W. Gardner, L.K. George, B. George, J.D. Cavallerano, F.L. Ferris and R. Klein, 2004. Retinopathy in diabetes. Diabetes Care, 27: S84-S87.
7. Yilmaz, M.I., A. Sonmez, C. Acikel, T. Celik, N. Bingol, M. Pinar, Z. Bayraklar and M. Ozata, 2004. Adiponectin may play a part in the pathogenesis of diabetic retinopathy. Euro. J. Endocrinol., 151: 135-140.
8. Giunti, S., Barit, D., and Cooper, M. E. (2006). Diabetic nephropathy: from mechanisms to rational therapies. Minerva medica, 97(3), 241-262.
9. Viberti, G. C., Jarrett, R. J., Mahmud, U., Hill, R. D., Argyropoulos, A., and Keen, H. (1982). Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. The Lancet, 319(8287), 1430-1432.
10. Gnudi, L., Thomas, S. M., and Viberti, G. (2007). Mechanical forces in diabetic kidney disease: a trigger for impaired glucose metabolism. Journal of the American Society of Nephrology, 18(8), 2226-2232.
11. Schalkwijk CG, Chaturvedi N, SchramMTet al. and the EURODIAB Prospective Complications Study Group, 2006. Adiponectin is inversely associated with renal function in type 1 diabetic patients. J Clin Endocrinol Metab; 91: 129–135
12. Saraheimo M, Forsblom C, Fagerudd J et al. on behalf of the FinnDiane Study Group ,2005. Serum adiponectin is increased in type 1 diabetic patients with nephropathy. Diabetes Care; 28: 1410–1414
13. Lin J, Hu FB, Curhan G 2007. Serum adiponectin and renal dysfunction in men with type 2 diabetes. Diabetes Care; 30: 239–244
14. Winzer C1, Wagner O, Festa A, Schneider B, Roden M, Bancher-Todesca D, Pacini G, Funahashi T, Kautzky-Willer A.2004.Plasmaadiponectin, insulinsensitivity, and subclinicalinflammation in women with priorgestationaldiabetesmellitus.DiabetesCare.; 27(7):1721-7.
15. Snehalatha C1, Mukesh B, Simon M, Viswanathan V, Haffner SM, Ramachandran A.2003.Plasma adiponectin is an independent predictor of type 2 diabetes in Asian indians. DiabetesCare.; 26(12):3226-9.
16. Yilmaz MI1, Sonmez A, Acikel C, Celik T, Bingol N, Pinar M, Bayraktar Z, Ozata M.2004 .Adiponectin may play a part in the pathogenesis of diabetic retinopathy.Eur J Endocrinol ;151(1):135-40.
17. Ran J1, Xiong X, Liu W, Guo S, Li Q, Zhang R, Lao G. 2010. Increased plasma adiponectin closely associates with vascular endothelial dysfunction in type 2 diabetic patients with diabetic nephropathy.Diabetes Res Clin Pract. ; 88(2):177-83.
18. Sameha Abu EL-Yazid, Nagwa Abd EL-Ghaffar Mohammad, Manal Abd El-Latif, 1 2 1 KhaledYounes, Amanykamal and Mohamed Nabil EL-Nahas, 2008. The Role of Serum Adiponectin Concentration in Diabetic Patients with Diabetic Retinopathy. Australian Journal of Basic and Applied Sciences, 2(3): 535-539.
19. Akiko Higuchi, Koji Ohashi, Shinji Kihara, Kenneth Walsh, Noriyuki Ouchi. 2009. Adiponectin Suppresses Pathological Microvessel Formation in Retina Through Modulation of Tumor Necrosis Factor-_ Expression. Circ Res;104:00-00.
20. Lin J1, Hu FB, Curhan G. 2007. Serum adiponectin and renal dysfunction in men with type 2 diabetes.Diabetes Care.; 30(2):239-44.
21. Ran J1, Xiong X, Liu W, Guo S, Li Q, Zhang R, Lao G. 2010. Increased plasma adiponectin closely associates with vascular endothelial dysfunction in type 2 diabetic patients with diabetic nephropathy.Diabetes Res Clin Pract.;88(2):177-83.
22. M.I. Yilmaz, M. Saglam, A.R. Qureshi, J.J. Carrero, K. Caglar, T. Eyileten, et al., (2008).Endothelial dysfunction in type-2 diabetics with early diabetic nephropathy is associated with low circulating adiponectin, Nephrol. Dial. Transplant. 23:1621–1627.
23. Ford, E. S. (1999). Body mass index, diabetes, and C-reactive protein among US adults.Diabetes care, 22(12), 1971-1977.
24. Ross, R. (1999). Atherosclerosis—an inflammatory disease.New England journal of medicine, 340(2), 115-126.
25. Ross, R. (1999). Atherosclerosis—an inflammatory disease.New England journal of medicine, 340(2), 115-126.
26. Petersen, H. H., Nielsen, J. P., and Heegaard, P. M. H. (2004). Application of acute phase protein measurements in veterinary clinical chemistry.Veterinary research, 35(2), 163-187.
27. Pickup, J. C. (2004). Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes care, 27(3), 813-823.
28. Pasceri, V., Willerson, J. T., and Yeh, E. T. (2000). Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation, 102(18), 2165-2168.
29. Pasceri, V., Chang, J., Willerson, J. T., and Yeh, E. T. (2001). Modulation of C-reactive protein–mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation, 103(21), 2531-2534.
30. Zwaka, T. P., Hombach, V., and Torzewski, J. (2001). C-reactive protein–mediated low density lipoprotein uptake by macrophages: Implications for atherosclerosis. Circulation, 103(9), 1194-1197.
31. Lagrand, W. K., Niessen, H. W., Wolbink, G. J., Jaspars, L. H., Visser, C. A., Verheugt, F. W., Meijer, C. J., and Hack, C. E. (1997). Creactive protein colocalizes with complement in human hearts during acute myocardial infarction. Circulation, 95(1), 97-103.
32. Griselli, M., Herbert, J., Hutchinson, W. L., Taylor, K. M., Sohail, M., Krausz, T., and Pepys, M. B. (1999). C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. The Journal of experimental medicine, 190(12), 1733-1740.
33. Libby, P., Ridker, P. M., and Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105(9), 1135-1143.
34. Ola, M. S., Nawaz, M. I., Siddiquei, M. M., Al-Amro, S., and Abu El-Asrar, A. M. (2012). Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Journal of Diabetes and its Complications, 26, 56-64.
35. Brownlee, M. (2005). The pathobiology of diabetic complications a unifying mechanism. Diabetes, 54(6), 1615-1625.
36. Huebschmann, A. G., Regensteiner, J. G., Vlassara, H., and Reusch, J. E. (2006). Diabetes and advanced glycoxidation end products. Diabetes Care, 29(6), 1420-1432.
37. Ahmed, N., and Thornalley, P. J. (2007). Advanced glycation endproducts: what is their relevance to diabetic complications?. Diabetes, Obesity and Metabolism, 9(3), 233-245.
38. Yan, S. F., Ramasamy, R., and Schmidt, A. M. (2008). Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Reviews Endocrinology, 4(5), 285-293.
39. El-Wakf, A. M., Abbas, M., El-Baz, A., and Mohammed, A. (2011). Role of Hypertension and Metabolic Abnormalities in the Development of Diabetic Nephropathy among Egyptian Patients with Type2 Diabetes. Nature and Science, 9(7), 220-228.
40. John, W. G. (1997). Glycated haemoglobin analysis.Annals of clinical biochemistry, 34, 17-31.
41. Diabetes Control and Complication Trial Research Group. (1993). Diabetes Control and Complications Trial (DCCT): the effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus. New England Journal of Medicine, 329(14), 977-986.
42. Stratton, I. M., Adler, A. I., Neil, H. A. W., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., and Holman, R. R. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. British medical journal, 321(7258), 405-412.
43. Nelson, R. G., Knowler, W. C., Pettitt, D. J., Hanson, R. L., and Bennett, P. H. (1995). Incidence and determinants of elevated urinary albumin excretion in Pima Indians with NIDDM. Diabetes Care, 18(2), 182-187.
44. Tapp, R. J., Shaw, J. E., Zimmet, P. Z., Balkau, B., Chadban, S. J., Tonkin, A. M., Welborn, T. A., and Atkins, R. C. (2004). Albuminuria is evident in the early stages of diabetes onset: results from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). American journal of kidney diseases: the official journal of the National Kidney Foundation, 44(5), 792-798.
45. Nikzamir, A., Esteghamati, A., Feghhi, M., Nakhjavani, M., Rashidi, A., and Reza, J. Z. (2009). The insertion/deletion polymorphism of the angiotensin-converting enzyme gene is associated with progression, but not development, of albuminuria in Iranian patients with type 2 diabetes. Journal of Renin-Angiotensin-Aldosterone System, 10(2), 109-114.
46. Sato, K. K., Hayashi, T., Harita, N., Yoneda, T., Nakamura, Y., Endo, G., and Kambe, H. (2009). Combined measurement of fasting plasma glucose and A1C is effective for the prediction of type 2 diabetes the Kansai Healthcare Study. Diabetes Care, 32(4), 644-646.
47. Gillett, M. J. (2009). International Expert Committee Report on the Role of the A1C Assay in the Diagnosis of Diabetes: Diabetes Care 2009; 32 (7): 1327–1334. The Clinical Biochemist Reviews, 30(4), 197-200.
48. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. ProcNatlAcadSci USA 2001; 98: 2005-2010.
49. Tomas E, Tsao TS, Saha AK, et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. ProcNatlAcadSci USA 2002; 99: 16309-16313.
50. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7: 941-946.
51. Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762-769.
52. Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5. flanking sequence of the rat acyl CoA oxidase gene. EMBO J 1992; 11: 433-439.
53. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. BiochimBiophys Acta 1996; 1302: 93-109.
54. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fattyacid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8: 1288-1295.
55. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005; 1: 15-25.
56. Roepstorff C, Halberg N, Hillig T, et al. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 2005; 288: E133-E142.
57. Sasso, F. C., De Nicola, L., Carbonara, O., Nasti, R., Minutolo, R., Salvatore, T., Conte, G., and Torella, R. (2006). Cardiovascular risk factors and disease management in type 2 diabetic patients with diabetic nephropathy. Diabetes Care, 29(3), 498-503.
58. Klein, R., Klein, B. E., and Moss, S. E. (1992). Epidemiology of proliferative diabetic retinopathy.Diabetes care, 15(12), 1875-1891.
59. Adler, A. I., Stevens, R. J., Manley, S. E., Bilous, R. W., Cull, C. A., and Holman, R. R. (2003). Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney international, 63(1), 225-232.
60. Festa, A., D'agostino, R., Howard, G., Mykkänen, L., Tracy, R. P., and Haffner, S. M. (2000). Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: The Insulin Resistance Atherosclerosis Study. Kidney international, 58(4), 1703-1710.
61. Viberti, G. C., Jarrett, R. J., Mahmud, U., Hill, R. D., Argyropoulos, A., and Keen, H. (1982). Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. The Lancet, 319(8287), 1430-1432.
62. Mogensen, C. E., and Christensen, C. K. (1984). Predicting diabetic nephropathy in insulin-dependent patients.The New England journal of medicine, 311(2), 89-93.
63. Jarrett, R. J., Viberti, G. C., Argyropoulos, A., Hill, R. D., Mahmud, U., and Murrells, T. J. (1984). Microalbuminuria Predicts Mortality in Noninsulin‐dependent Diabetes. Diabetic Medicine, 1(1), 17- 19.
64. Mattock, M. B., Morrish, N. J., Viberti, G., Keen, H., Fitzgerald, A. P., and Jackson, G. (1992). Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes, 41(6), 735-741.
65. Damsgaard, E. M., Froland, A., Jorgensen, O. D., and Mogensen, C. E. (1992). Eight to nine year mortality in known non-insulin dependent diabetics and controls. Kidney International, 41(4), 731-735.
66. Gall, M. A., Borch-Johnsen, K., Hougaard, P., Nielsen, F. S., and Parving, H. H. (1995). Albuminuria and poor glycemic control predict mortality in NIDDM. Diabetes, 44(11), 1303-1309.
67. MacLeod, J. M., Lutale, J., and Marshall, S. M. (1995). Albumin excretion and vascular deaths in NIDDM.Diabetologia, 38(5), 610-616.
68. Stehouwer, C. D., Zeldenrust, G. C., den Ottolander, G. J., Hackeng, W. H. L., Donker, A. J. M., and Nauta, J. J. P. (1992). Urinary albumin excretion, cardiovascular disease, and endothelial dysfunction in non-insulin-dependent diabetes mellitus. The Lancet, 340(8815), 319-323.
69. Keane, W. F., Brenner, B. M., De Zeeuw, D., Grunfeld, J. P., Mcgill, J., Mitch, W. E., Ribeiro, A. B., Shahinfar, S., Simpson, R. L., Snapinn, S. M., and Toto, R. (2003). The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney international, 63(4), 1499-1507.
70. Stehouwer, C. D., Henry, R. M., Dekker, J. M., Nijpels, G.,Heine, R. J., and Bouter, L. M. (2004). Microalbuminuria is associatedwith impaired brachial artery, flow-mediated vasodilation in elderlyindividuals without and with diabetes: Further evidence for a link between microalbuminuria and endothelial dysfunction—The Hoorn Study. Kidney International, 66(supplement 92), S42-S44.
71. Ritz, E. (2003). Minor renal dysfunction: an emerging independentcardiovascular risk factor. Heart, 89(9), 963-964.
72. Batlle-Gualda, E., Martínez, A. C., Guerra, R. A., and Pascual,E. (1997). Urinary albumin excretion in patients with systemic lupuserythematosus without renal disease.Annals of the rheumatic diseases,56(6), 386-389.
73. Mahmud, N., O'Connell, M. A., Stinson, J., Goggins, M. G.,Weir, D. G., and Kelleher, D. (1995). Tumour necrosis factor-alpha andmicroalbuminuria in patients with inflammatory bowel disease.Europeanjournal of gastroenterology and hepatology, 7(3), 215-219.