Abstract
Objective: The aim of this study is to determine the impact of CYP3A5 c. 6986A>G and ABCB1 c. 3435C>T polymorphisms on Tacrolimus (Tac) pharmacokinetics in Algerian kidney recipients transplant. Pharmacogenetics methods may be used prospectively to aid dose selection and individualize immunosuppressive therapy.
Methods: Sixty three kidney transplant patients from West Algerian population were enrolled in the study. The Tac pharmacokinetic parameters were calculated from patients blood. The Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique and data were analyzed by χ2.
Results: Our findings suggest that there is a significant distribution of TAC Concentration/Dose Ratio in Days 30 to 90 for these polymorphisms. However, at the sixth month after transplantation the Tac concentration/Dose Ratio present a significant distribution for only the CYP3A5 c. 6986A>G polymorphism.
Conclusion: We have shown, for the first time in Algerian population that theses polymorphisms are not an important genetic factor on Tac pharmacokinetics.
Keys Words: Kidney transplant, CYP3A5, ABCB1, Tacrolimus, cyclosporine, Algeria, polymorphism.
References
1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplanttation. ClinPharmacokinet.2004 ; 43(10):623–653
2. The European FK506 Multicentre Liver Study Group: Transplant Proc. 1994; 26:3260.
3. Provenzani A, Notarbartolo M, Labbozzetta M, Poma P, Biondi F, et al. The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. AnnTransplant. 2009; 14: 23–31.
4. Vannaprasaht S, Reungjui S, Supanya D, Sirivongs D, Pongskul C, et al. Personalized tacrolimus doses determined by CYP3A5 genotype for induction and maintenance phases of kidney transplantation. Clin Ther. 2013; 35: 1762–9.
5. Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab. 2002 Jun;3(3):275-87.
6. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics. 2005;15: 693–704.
7. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A «silent» polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315: 525–8.
8. Paraskevi F. Katsakiori, Eirini P. Papapetrou,1 Dimitrios S. Goumenos, 2 George C. Nikiforidis, 3 and Christodoulos S. Flordellis. Tacrolimus and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors: An interaction study in CYP3A5 non-expressors, renal transplant recipients. Indian J Pharmacol. 2011; 43(4): 385–8.
9. Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I, Beres J, Fodor L, Szabo M, Melegh B. Genetic variability and haplotype profile of MDR1 (ABCB1) in Roma and Hungarian population samples with a review of the literature. Drug Metab Pharmacokinet. 2011; 26(2):206-15.
10. Soper DS. Analysis of Variance (ANOVA) Calculator - One-Way ANOVA from Summary Data [Software]. Available from http://www.danielsoper.com/statcalc. 2006.
11. Zuo XC, Ng CM, Barrett JS, Luo AJ, Zhang BK, Deng CH, Xi LY et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.. Pharmacogenet Genomics. 2013; 23(5): 251-61.
12. Vannaprasaht S, Reungjui S, Supanya D, Sirivongs D, Pongskul C, Avihingsanon Y, Tassaneeyakul W. Personalized tacrolimus doses determined by CYP3A5 genotype for induction and maintenance phases of kidney transplantation. Clin Ther. 2013; 35(11):1762-9.
13. Kurzawski M, Dąbrowska J, Dziewanowski K, Domański L, Perużyńska M, Droździk M. CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations inkidney transplant recipients. Pharmacogenomics. 2014; 15(2):179-88.
14. Yan L, Li Y, Tang JT, An YF, Wang LL, Shi YY. Donor ABCB1 3435 C>T genetic polymorphisms influence early renal function in kidney transplant recipients treated with tacrolimus. Pharmacogenomics. 2016; 17(3): 249-57.
15. Kravljaca M, Perovic V, Pravica V, Brkovic V, Milinkovic M, Lausevic M, Naumovic R. The importance of MDR1 gene polymorphisms for tacrolimus dosage. Eur J Pharm Sci. 2016; 83:109-13.
16. Mourad M, Wallemacq P, De Meyer M, Brandt D, Van Kerkhove V, Malaise J, Chaïb Eddour D, Lison D, Haufroid V. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function. Clin Chem Lab Med. 2006; 44(10): 1192-8.
17. Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P, Legendre C, Daly AK. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003; 76(8):1233-5.
18. Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K, Suzuki T, Habuchi T, Kato T. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation. 2004; 78(8):1182-7.
19. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, Goldberg L, Holt DW. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations afterkidney transplantation. Am J Transplant. 2004; 4(6):914-9.
20. Kuypers DR, de Jonge H, Naesens M, Vanrenterghem Y. A prospective, open-label, observational clinical cohort study of the association between delayed renal allograft function, tacrolimus exposure, and CYP3A5 genotype in adult recipients. Clin Ther. 2010 Nov;32(12):2012-23. doi: 10.1016/j.clinthera.2010.11.010.
21. Shi Y, Li Y, Tang J, Zhang J, Zou Y, Cai B, Wang L. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene. 2013; 512(2): 226-31.