Title: Study of Macular Thickness Using Spectral Domain Optical Coherence Tomography in Healthy Indian Subjects
Authors: Dr Manushree Gautam, Dr Kamlesh Khilnani, Dr Reetika Saxena
DOI: http://dx.doi.org/10.18535/jmscr/v4i2.53
Purpose: To generate normative data for SD-OCT (Topcon 3D OCT 2000) estimated macular thickness in Indian eyes and establish its relation with age sex and refractive error. Materials and methods: In this cross sectional , observational, hospital based study 800 eyes of 400 healthy Indian individuals underwent a macula OCT scan using Topcon SD OCT. Macular thickness was measured in 9 ETDRS regions .The effect of age , sex , refractive error on foveal thickness was determined. Results: The mean central foveeal thickness was 226.4025 ±22.5063 μm. Males were found to have a significantly thicker macula (P< 0.05) than females with the central foveal thickness of 229.8153 ± 21.4222 vs 220.7748 ±23.14742 . Central foveal thickness was found to have very weak correlation with age which was not statistically significant. All other regions (the parafoveal and perifoveal thickness) showed statistically significant negative correlation with age. Conclusion: We provide the largest normative data for SD OCT Topcon 3D OCT 2000. We also suggest that demographic factor like gender should be considered while interpreting any OCT measurements. The normal range of central macular thickness for Indian population should be 181 µm to 270 µm for Topcon SD OCT. Age and refractive error do not show a significant correlation with central macular thickness. Keywords- Topcon 3D OCT 2000, macular thickness, SD-OCT.
1. Pedut-Kloizman T, Paktera HM, Schuman JS, Szwartz JC, Hee MR. Ophthal Clin North Am 1998;11:465-87. 2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, at al. Optical coherence tomography. Science 1991;254:1178-81. 3. Patrick J. Kelty, John F. Payne, Rupal H. Trivedi, Jason Kelty, Esther M. Bowie and Berdine M. Burger Macular Thickness Assessment in Healthy Eyes Based on Ethnicity Using Stratus OCT Optical Coherence Tomography. Invest. Ophthalmol. Vis. Sci. June 2008 vol. 49 no. 62668-2672. 4. Alan C. Sull, Laurel N. Vuong, Lori Lyn Price, Vivek J. Srinivasan, Iwona Gorczynska, James G. Fujimoto, Joel S. Schuman, and Jay S. Duker, Comparison of spectral/fourier domain optical coherence tomography instruments for assessment of normal macular thickness Retina. 2010 February; 30(2): 235. 5. Leung CK, Cheung CY, Weinreb RN, et al. Comparison of Macular Thickness Measurements between Time Domain and Spectral Domain Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2008;49: 4893–489. 6. Legarreta JE, Gregori G, Punjabi OS, Knighton RW, Lalwani GA, et al. Macular thickness measurement in normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging 2008;39: S43–9. 7. Giani A, Cigada M, Choudhry N, Deiro AP, Oldani M, et al. Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. Am J Ophthalmol 2010;150: 815–24. doi:10.1016/j.ajo. 2010. 06.025. 8. Huang J, Liu X, Wu Z, Guo X, Xu H, et al. Macular and retinal nerve fiber layer thickness measurements in normal eyes with the Stratus OCT, the Cirrus HD-OCT, and the Topcon 3D OCT-1000. J Glaucoma 2011;20:118–25. doi:10.1097/IJG.0b013e3181d786f8. 9. Pierro L, Giatsidis SM, Mantovani E, Gagliardi M. Macular thickness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments. Am J Ophthalmol 2010;150:199–204. doi:10.1016/j.ajo.2010.03.015. 10. Menke MN, Dabov S, Knecht P, Sturm V. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography. Am J Ophthalmol 2009;147:467–72. doi: 10.1016/j.ajo.2008.09.005 11. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Invest Ophthalmol Vis Sci. 2006;47:2351–2357. 12. El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol. 09;127:50–58. 13. Kelty PJ, Payne JF, Trivedi RH, et al. Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49:2668–2672 14. El-Ashry M, Hegde V, James P, Pagliarini S. Analysis of macular thickness in British population using optical coherence tomography (OCT): an emphasis on interocular symmetry. Curr Eye Res. 2008; 33:693–699. 15. Guedes V, Schuman JS, Hertzmark E, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110:177–189. 16. Asefzadeh B, Cavallerano AA, Fisch BM. Racial differences in macular thickness in healthy eyes. Optom Vis Sci. 2007;84:941–945. 17. Tewari HK, Wagh VB, Sony P, et al. Macular thickness evaluation using the optical coherence tomography in normal Indian eyes. Indian J Ophthalmol. 2004;52:199–204. 18. Xin Rong Duan, Yuan Bo Liang, David S. Friedman, Lan Ping Sun, Tien Yin Wong, Qiu shan Tao, Lingzhi Bao, Ning Li Wang, Normal Macular Thickness Measurements Using Optical Coherence Tomography in Healthy Eyes of Adult Chinese Persons: The Handan Eye Study Ophthalmology Volume August 2010;117 (8):1585-1594. 19. Sung KR, Wollstein G, Bilonick RA, et al. Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head. Ophthalmology. 2009;116:1119–1124. 20. Chan A, Duker JS, Ko TH, et al. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol. 2006;124:193–198. 21. Massin P, Erginay A, Haouchine B, et al. Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol. 2002;12:102–108. 22. Sanchez-Tocino H, Alvarez-Vidal A, Maldonado MJ, et al. Retinal thickness study with optical coherence tomography in patients with diabetes. Invest Ophthalmol Vis Sci. 2002;43:1588–1594. 23. Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol. 2009;93:1448–1452. 24. Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high‑definition spectral domain optical coherence tomography (Spectralis). Am J Ophthalmol 2009;148:266‑71. 25. Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: A spectral domain‑optical coherence tomography study. Invest Ophthalmol Vis Sci 2010;51:3913‑18. 26. Wong AC, Chan CW, Hui SP. Relationship of gender, body mass index and axial length with central retinal thickness using optical coherence tomography. Eye 2005;19:292‑7. 27. Massin P, Erginay A, Haouchine B, Mehidi AB, Paques M, Gaudric A. Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol. 2002;12(2):102–108. 28. Bressler NM, Edwards AR, Antoszyk AN, et al. Retinal thickness on Stratus optical coherence tomography in people with diabetes and minimal or no diabetic retinopathy. Am J Ophthalmol. 2008;145(5): 894–901. 29. Manassakorn A, Chaidaroon W, Ausayakhun S, et al. Normative database of retinal nerve fiber layer and macular retinal thickness in a Thai population. Jpn J Ophthalmol. 2008;52:450–456. 30. Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 2005;46:974‑8. 31. Kanai K, Abe T, Murayama K, Yoneya S. Retinal thickness and changes with age. Nippon Ganka Gakkai Zasshi 2002;106:162‑5. 32. Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998;105(2)360–370. 33. Wu PC, Chen YJ, Chen CH, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye (Lond). 2008;22: 551–555. 34. Oshitari T, Hanawa K, Adachi-Usami E. Changes of macular and RNFL thicknesses measured by Stratus OCT in patients with early stage diabetes. Eye (Lond). 2009;23:884–889. 35. Hsu SY, Tsai RK. Analysis of retinal nerve fiber layer and macular thickness measurements in healthy Taiwanese individuals using optical coherence tomography (Stratus OCT). J Glaucoma. 2008;17:30–35. 36. Kanai K, Abe T, Murayama K, Yoneya S. Retinal thickness and changes with age [in Japanese]. Nippon Ganka Gakkai Zasshi. 2002;106:162–165. 37. Goebel W, Kretzchmar-Gross T. Retinal thickness in diabetic retinopathy: a study using optical coherence tomography (OCT). Retina. 2002;22:759–767. 38. Adhi M, Aziz S, Muhammad K, Adhi MI. Macular Thickness by Age and Gender in Healthy Eyes Using Spectral Domain Optical Coherence Tomography. PLoS ONE 2012;7(5):e37638. doi:10.1371/ journal.pone.0037638. 39. Bruce A, Pacey LE, Dharni P, Scally AJ, Barrett BT. Repeatability and Reproducibility of macular thickness measurements using fourier domain optical coherence tomography. Open Ophthalmol J 2009;3: 10–4. 40. Amitha Domalpally, Sapna Gangaputra, MPH; Qian Peng, Ronald P. Danis. Repeatability of Retinal Thickness Measurements Between Spectral-Domain and Time-Domain Optical Coherence Tomography Images in Macular Disease Ophthalmic Surgery, Lasers and Imaging Retina November/December 2010 - Volume 41 · Issue 6: S34-S41. 41. Panda‑Jonas S, Jonas JB, Jakobczyk‑Zmija M. Retinal photoreceptor density decreases with age. Ophthalmol 1995;102:1853‑9. 42. Gao H, Hollyfield JG. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 1992;33:1‑17. 43. Eriksson U, Holmström G, Alm A, Larsson E. A population-based study of macular thickness in full-term children assessed with Stratus OCT: normative data and repeatability. Acta Ophthalmol. 2009;87(7): 741-745. 44. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Invest Ophthalmol Vis Sci 2006;47(6):2351-7. 45. Hendrickson AE and Yuodelis C. The morphological development of the human fovea. Ophthalmology 1984;91:603-612. 46. Yuodelis C and Hendrickson AE. A qualitative and quantitative analysis of the human fovea during development, Vision Res 1986; 26:847-855. 47. Manassakorn A, Chaidaroon W, Ausayakhun S, Aupapong S, Wattananikorn S. Normative database of retinal nerve fiber layer and macular retinal thickness in a Thai population. Jpn J Ophthalmol 2008;52:450‑6. 48. Bindu Appukuttan, Anantharaman Giridhar, Mahesh Gopalakrishnan, Sobha Sivaprasad Normative spectral domain optical coherence tomography data on macular and retinal nerve fiber layer thickness in Indians IJO 2013. 49. Jingjing Huang, Xing Liu, Ziqiang Wu, Hui Xiao, Laurie Dustin, and Srinivas Sadda, Macular thickness measurements in normal eyes with time domain and fourier domain optical coherence tomography Retina. 2009 Jul–Aug; 29(7): 980–987. 50. Amir H. Kashani Ingrid E. Zimmer-Galler Syed Mahmood Shah Laurie Dustin Diana V. Do Dean Eliott Julia A. HallerQuan Dong Nguyen Retinal Thickness Analysis by Race, Gender, and Age Using Stratus OCT American Journal of Ophthalmology Volume 149, Issue 3 , Pages 496-502.e1, March 2010. 51. Grover S, Murthy RK, Brar VS, Chalam KV. Comparison of retinal thickness in normal eyes using Stratus and Spectralis Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2010;51:2644‑47.
Abstract
References