Title: Role of mushrooms as a novel antiviral agents–lesson learnt from SARS-COV-2 infection

Authors: Kabir Singal, Narender Mahajan, Anshoo Agarwal, Meenu Aggarwal

 DOI: https://dx.doi.org/10.18535/jmscr/v12i04.08

Abstract

Coronavirus, SARS-CoV-2, producing the disease COVID-19 is a virus that aim at mostly the human respiratory system and other organs. SARS-CoV-2 is a novel strain that has not been earlier recognized in human beings, however, there have been earlier outbreaks of various versions of the coronavirus including severe acute respiratory syndrome (SARS-CoV1) and Middle East respiratory syndrome (MERS-CoV) which have been acclaimed as major pathogens that are an immense warning to public health and world-wide economies. Presently, no exact cure for SARS-CoV-2 infection has been recognized; however, certain medicines have shown noticeable effectiveness in viral inhibition of the disease. Natural substances such as herbs and mushrooms have earlier established immense antiviral and anti-inflammatory activity. Thus, the potential of natural substances as effectual treatments against COVID-19 may seem hopeful. One of the would-be candidates against the SARS-CoV-2 virus may be different types of mushrooms many of these are widely used as a raw material in various medical conditions. In this overview, we have evaluated mushrooms which are natural products with many biological activities in terms of the antiviral and anti-inflammatory effects.

Keywords: Coronavirus; SARS-CoV-2, Herbs, Mushrooms, Antiviral agents, COVID-19 Infection antiviral sources, Pneumonia.

References

  1. Shereen, M.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24.
  2. COVID-19 Coronavirus Pandemic; Worldometer: USA, 2020.
  3. Wang, L.-S.; Wang, Y.-R.; Ye, D.-W.; Liu, Q.-Q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. Int. J. Antimicrob. Agents 2020. [CrossRef] [PubMed] Nutrients 2020, 12, 2573 10 of 13
  4. Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020.
  5. Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278–280.
  6. Milne-Price, S.; Miazgowicz, K.; Munster, V. The emergence of the Middle East Respiratory Syndrome coronavirus (MERS-CoV). Pathog. Dis. 2014, 71.
  7. Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—An update on the status. Mil. Med. Res. 2020, 7, 11.
  8. Mousavizadeh, L.; Ghasemi, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2020.
  9. Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J. Biomol. Struct. Dyn. 2020, 1–10.
  10. Wrobel, A.G.; Benton, D.J.; Xu, P.; Roustan, C.; Martin, S.R.; Rosenthal, P.B.; Skehle, J.J.; Gamblin, S.J. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 2020, 27, 763–767.
  11. Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020.
  12. Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 2020.
  13. Wrapp, D.; Nianshuang, W.; Corbett, K.; Goldsmith, J.; Hsieh, C.-L.; Abiona, O.; Graham, B.; Mclellan, J. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, eabb2507.
  14. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Wei, Y.; Xia, J.A.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513.
  15. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395.
  16. Zhou, P.; Yang, X.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579.
  17. Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020, 38.
  18. Bagad, A.S.; Joseph, J.A.; Bhaskaran, N.; Agarwal, A. Comparative Evaluation of Anti-Inflammatory Activity of Curcuminoids, Turmerones, and Aqueous Extract of Curcuma longa. Adv. Pharmacol. Sci. 2013, 2013, 805756.
  19. Lin, L.T.; Hsu, W.C.; Lin, C.C. Antiviral natural products and herbal medicines. J. Tradit. Complement Med. 2014, 4, 24–35.
  20. Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.F.; Lau, C.P.; Ho, H.M.; Lee, M.Y.-H.; Au, S.W.-N.; Cheng, C.H.-K.; Lau, C.B.-S.; et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnop. 2008, 118, 79–85.
  21. Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020, 20.
  22. Lindequist, U.; Niedermeyer, T.H.J.; Julich, W.D. The pharmacological potential of mushrooms. Evid. Based Complement. Alternat. Med. 2005, 2, 285–299.
  23. Jassim, S.A.A.; Naji, M.A. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol. 2003, 95, 412–427.
  24. Chen, Y.; Zhang, X.; Guo, Q.; Cao, L.; Qin, Q.; Li, C.; Zhao, M.; Wang, W. Plant morphology, physiological characteristics, accumulation of secondary metabolites and antioxidant activities of Prunella vulgaris L. under UV solar exclusion. Biol. Res. 2019, 52, 17. Nutrients 2020, 12, 2573 11 of 13
  25. Wang, S.J.; Wang, X.H.; Dai, Y.Y.; Ma, M.H.; Rahman, K.; Nian, H.; Zhang, H. Prunella vulgaris: A Comprehensive Review of Chemical Constituents, Pharmacological Effects and Clinical Applications. Curr. Pharm. Des. 2019, 25, 359–369.
  26. Bai, Y.; Xia, B.; Xie, W.; Zhou, Y.; Xie, J.; Li, H.; Liao, D.; Lin, L.; Li, C. Phytochemistry and pharmacological activities of the genus Prunella. Food Chem. 2016, 204, 483–496.
  27. Fisher, R. The English Names of Our Commonest Wild Flowers; T. Buncle & Co.: Arbroath, UK, 1932.
  28. EL-Saber Batiha, G.; Beshbishy, A.M.; Wasef, L.W.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Devkota, H.P. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872.
  29. Goncagul, G.; Ayaz, E. Antimicrobial effect of garlic (Allium sativum). Recent Pat. Antiinfect Drug. Discov. 2010, 5, 91–93.
  30. Weber, N.; Andersen, D.; North, J.; Murray, B.; Lawson, L.; Hughes, B. In Vitro Virucidal Effects of Allium sativum (Garlic) Extract and Compounds. Planta Med. 1992, 58, 417–423.
  31. Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed. 2014, 4, 1–14.
  32. Vilček, J.; Le, J. Interferon γ. In Encyclopedia of Immunology, 2nd ed.; Delves, P.J., Ed.; Elsevier: Oxford, UK, 1998.
  33. Ren, G.; Xu, L.; Lu, T.; Yin, J. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus. Int. J. Biol. Macromol. 2018, 115.
  34. He, Y.; Li, X.; Hao, C.; Zeng, P.; Zhang, M.; Liu, Y.; Chang, Y.; Zhang, L. Grifola frondosa polysaccharide: A review of antitumor and other biological activity studies in China. Discov. Med. 2018, 25, 159–176.
  35. Gu, C.-Q.; Li, J.W.; Chao, F.; Jin, M.; Wang, X.-W.; Shen, Z.-Q. Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antivir. Res. 2007, 75, 250–257.
  36. Gu, C.-Q.; Li, J.W.; Chao, F.-H. Inhibition of hepatitis B virus by D-fraction from Grifola frondosa: Synergistic effect of combination with interferon-α in HepG2 2.2.15. Antivir. Res. 2006, 72, 162–165.
  37. Nanba, H.; Kodama, N.; Schar, D.; Turner, D. Effects of Maitake (Grifola frondosa) glucan in HIV-infected patients. Mycoscience 2000, 41, 293–295.
  38. Abu-serie, M.M.; Habashy, N.H.; Attia, W.E. In vitro evaluation of the synergistic antioxidant and anti-inflammatory activities of the combined extracts from Malaysian Ganoderma lucidum and Egyptian Chlorella vulgaris. BMC Complement. Altern. Med. 2018, 18, 154.
  39. Hyun, K.; Jeong, S.; Lee, D.; Park, J.; Lee, J. Isolation and characterization of a novel platelet aggregation inhibitory peptide from the medicinal mushroom, Inonotus obliquus. Peptides 2006, 27, 1173–1178.
  40. Pan, H.-H.; Yu, X.-T.; Li, T.; Wu, H.-L.; Jiao, C.-W.; Cai, M.-H.; Li, X.-M.; Xie, Y.-Z.; Wang, Y.; Peng, T. Aqueous Extract from a Chaga Medicinal Mushroom, Inonotus obliquus (Higher Basidiomyetes), Prevents Herpes Simplex Virus Entry Through Inhibition of Viral-Induced Membrane Fusion. Int. J. Med. Mushrooms 2013, 15, 29–38.
  41. Shibnev, V.A.; Mishin, D.V.; Garaev, T.M.; Finogenova, N.P.; Botikov, A.G.; Deryabin, P.G. Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. Bull. Exp. Biol. Med. 2011, 151, 612–614.
  42. Lemieszek, M.; Langner, E.; Kaczor, J.; Kandefer-Szersze ´n, M.; Sanecka, B.; Mazurkiewicz, W.; Rzeski, W. Anticancer Effects of Fraction Isolated from Fruiting Bodies of Chaga Medicinal Mushroom, Inonotus obliquus (Pers.:Fr.) Pilát (Aphyllophoromycetideae): In Vitro Studies. Int. J. Med. Mushrooms 2011, 13, 131–143.
  43. Glamoclija, J.; Ciric, A.; Nikolic, M.; Fernandes, A.; Barros, L.; Calhelha, R.; Ferreira, I.; Sokovi´c, M.; van Griensven, L. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol. 2015, 162.
  44. Filippova E I, Mazurkova N A, Kabanov A S, Teplyakova T V, Ibragimova Z B, Makarevich E V, Mazurkov O Y, Shishkina L N. Antiviral properties of aqueous extracts isolated from higher Basidiomycetes as respect to pandemic influenza virus A (H1N1)2009. Mod Probl Sci Educ, 2012, 2: 1–7. (In Russian)
  45. Moro, C.; Palacios, I.; Lozano, M.; D’arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012, 130, 350–355.
  46. Najafzadeh, M.; Reynolds, P.D.; Baumgartner, A. Chaga mushroom extract inhibits oxidative DNA damage in lymphocytes of patients with inflammatory bowel disease. Biofactors 2007, 31, 191–200.
  47. Van, Q.; Nayak, B.; Reimer, M.; Jones, P.; Fulcher, R.; Rempel, C.B. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 2009, 125, 487–493.
  48. Chen, Y.-F.; Zheng, J.-J.; Qu, C.; Xiao, Y.; Li, F.-F.; Jin, Q.-X.; Li, H.-H.; Meng, F.-P.; Jin, G.-H.; Jin, D. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance. Artif. Cells Nanomed. Biotechnol. 2019, 47, 757–766.
  49. Lee, I.-K.; Kim, Y.-S.; Jang, Y.-W.; Jung, J.-Y.; Yun, B.-S. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorganic Med. Chem. Lett. 2008, 17, 6678–6681.
  50. Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013, 139, 503–508. Nutrients 2020, 12, 2573 13 of 13
  51. Shibnev, V.A.; Garaev, T.M.; Finogenova, M.P.; Kalnina, L.B.; Nosik, D.N. Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus. Vopr. Virusol. 2015, 60, 35–38.
  52. Aras, A.; Gohar Khalid, S.; Jabeen, S.; Farooqi, A.; Xu, B. Regulation of cancer cell signaling pathways by mushrooms and their bioactive molecules: Overview of the journey from benchtop to clinical trials. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018.
  53. Li, B.Y.; Hu, Y.; Li, J.; Shi, K.; Shen, Y.F.; Zhu, B.; Wang, G.X. Ursolic acid from Prunella vulgaris L. efficiently inhibits IHNV infection in vitro and in vivo. Virus Res. 2019, 273, 197741. (http://creativecommons.org/licenses/by/4.0/).
  54. Sorimachi K, Ikehara Y, Maezato G, et al. Inhibition by Agaricus blazei Murill fractions of cytopathic effect induced by western equine encephalitis (WEE) virus on VERO cells in vitro. Biosci Biotechnol Biochem. 2001;65(7):1645-1647. https://doi. org/10.1271/bbb.65.1645
  55. Faccin LC, Benati F, Rincão VP, et al. Linhares anti-viral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus Brasiliensis against polio virus type 1. Lett Appl Microbiol. 2007;45(1):24-28. https://doi. org/10.1111/j.1472-765X.2007.02153.x
  56. Gu CQ, Li JW, Chao FH. Inhibition of Hepatitis B Virus by D-fraction From Grifola Frondosa: Synergistic Effect of Combination With Interferon-Alpha in HepG2 2.2.15. Antiviral Res. 2006;72(2):162- 165. https://doi.org/10.1016/j.antiviral.2006.05.01122
  57. Hsu CH, Hwang KC, Chiang YH, Chou P. The mushroom Agaricus blazei Murill extract normalizes liver function in patients with chronic hepatitis B. J Altern Complement Med. 2008;14(3):299- 301. https://doi.org/10.1089/acm.2006.6344
  58. Grinde B, Hetland G, Johnson E. Effects on gene expression and viral load of a medicinal extract from Agaricus blazei in patients with chronic hepatitis C infection. Int Immunopharmacol. 2006;6:1311-1314.
  59. Gu CQ, Li JW, Chao F, et al. Isolation, identification and func tion of a novel anti-HSV-1 protein from Grifola frondosa. Antiviral Res. 2007;75(3):250-257. https://doi.org/10.1016/j.antiv iral.2007.03.011
  60. Minari MC, Rincão VP, Soares SA, Ricardo NM, Nozawa C, Linhares RE. Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus . Acta Virol. 2011;55(3):255-259. https://doi.org/10.4149/av_2011_03_255
  61. Yamamoto KA, Galhardi LC, Rincão VP, et al. Antiherpetic activity of an Agaricus brasiliensis polysaccharide, its sulfated deriva tive and fractions. Int J Biol Macromol. 2013;52:9-13. https://doi. org/10.1016/j.ijbiomac.2012.09.029
  62. Cardozo FT, Larsen IV, Carballo EV, et al. In vivo anti-her pes simplex activity of a sulfated derivative of Agaricus brasil iensis mycelial polysaccharide. Antimicrob Agents Chemother. 2013;57(6):2541-2549. https://doi.org/10.1128/AAC.02250-12
  63. Avtonomova AV, Krasnopolskaya LM. Antiviral properties of ba sidiomycetes metabolites Antibiot Khimioter. Review [Article in Russian]. 2014; 59(7-8):41-48.
  64. Eguchi N, Fujino K, Thanasut K, et al. In vitro anti-influenza virus activity of Agaricus brasiliensis KA21. Biocontrol Sci. 2017;22(3):171-174. https://doi.org/10.4265/bio.22.171
  65. Zhao C, Gao L, Wang C, et al. Structural characterization and anti viral activity of a novel heteropolysaccharide isolated from Grifola frondosa against enterovirus 71. Carbohydr Polym. 2016;144:382- 389. https://doi.org/10.1016/j.carbpol.2015.12.005
  66. Ellan K, Thayan R, Raman J, Hidari KIPJ, Ismail N. Sabaratnam V. Anti-viral activity of culinary and medicinal mushroom ex tracts against dengue virus serotype 2: an in-vitro study. BMC Complement Altern Med. 2019;19(1):260. https://doi.org/10.1186/ s12906-019-2629-y
  67. Johnson E, Førland DT, Saetre L, Bernardshaw SV, Lyberg T, Hetland G. Effect of an extract based on the medicinal mush- room Agaricus blazei murill on release of cytokines, chemo- kines and leukocyte growth factors in human blood ex vivo and in vivo. Scand J Immunol. 2009;69(3):242-250. https://doi. org/10.1111/j.1365-3083.2008.02218.x
  68. Johnson E, Førland DT, Hetland G, Sætre L, Olstad OK, Lyberg T. Effect of AndoSan™ on expression of adhesion molecules and production of reactive oxygen species in human monocytes and granulocytes in vivo. Scand J Gastroenterol. 2012;47(8–9):984- 992. https://doi.org/10.3109/00365521.2012.660544
  69. Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E. (a) Effect of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. PLoS One. 2016;11(3):e0150191. https://doi. org/10.1371/journal.pone.0150191
  70. Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E. (b) Effect of the Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSanTM, on Symptoms, Fatigue and Quality of Life in Patients with Crohn‘s Disease in a Randomized Single-Blinded Placebo Controlled Study. PLoS One. 2016;11(7):e0159288. https://doi. org/10.1371/journal.pone.0159288
  71. Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E. (c) Cytokine levels after consumption of a medicinal Agaricus blazei mu- rill-based mushroom extract, AndoSan™, in patients with Crohn‘s disease and ulcerative colitis in a randomized single-blinded pla- cebo-controlled study. Scand J Immunol. 2016;84(6):323-331. https://doi.org/10.1111/sji.12476
  72. Croccia C, Agnaldo AJ, Ribeiro Pinto LF, et al. Royal Sun Medicinal Mushroom Agaricus Brasiliensis (Higher Basidiomycetes) and the Attenuation of Pulmonary Inflammation Induced by 4-(methylni- trosamino)-1-(3-pyridyl)-1-butanone (NNK). Int J Med Mushrooms. 2013;15(4):345-355. https://doi.org/10.1615/intjmedmushr.v15.i4.20
  73. Lee KF, Chen JH, Teng CC, et al. Protective effects of Hericium erinaceus mycelium and its isolated erinacine A against ischemia-injury-induced neuronal cell death via the inhibition of iNOS/p38 MAPK and nitrotyrosine. Int J Mol Sci. 2014;15(9):15073-15089. https://doi.org/10.3390/ijms1 50915073
  74. Val CH, Brant F, Miranda AS, et al. Effect of mushroom Agaricus blazei on immune response and development of experimental ce- rebral malaria. Malar J. 2015;11(14):311. https://doi.org/10.1186/ s12936-015-0832-y
  75. Diling C, Xin Y, Chaoqun Z, et al. Extracts from Hericium erina- ceus relieve inflammatory bowel disease by regulating immunity and gut microbiota. Oncotarget. 2017;8(49):85838-85857. https:// doi.org/10.18632/oncotarget.20689
  76. Sandargo B, Michehl M, Praditya D, et al. Antiviral meroterpenoid rhodatin and sesquiterpenoids rhodocoranes A–E from the wrinkled peach mushroom, Rhodotus palmatus. Organic letters. 2019;21(9):3286–3289.
  77. Piraino F, Brandt CR. Isolation and partial characterization of an antiviral, RC-183, from the edible mushroom Rozites caperata. Antiviral research. 1999;43(2):67–78.
  78. Doğan HH, Karagöz S, Duman R. In vitro evaluation of the antiviral activity of some mushrooms from Turkey. International journal of medicinal mushrooms. 2018;20(3):201–212.
  79. Santoyo S, Ramírez-Anguiano AC, Aldars-García L, et al. Antiviral activities of Boletus edulis, Pleurotus ostreatus and Lentinus edodes extracts and polysaccharide fractions against Herpes simplex virus type Journal of food and nutrition research. Journal of Food and Nutrition Research. 2012;51(4): 225–235.
  80. Lee SM, Kim SM, Lee YH, et al. Macromolecules isolated from Phellinus pini fruiting body: chemical characterization and antiviral activity. Macromolecular Research. 2010;18(6):602–609.
  81. Teplyakova TV, Psurtseva NV, Kosogova TA. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). International Journal of Medicinal Mushrooms. 2012;14(1):37– 45.
  82. Ellan K, Thayan R, Raman J, et al. Anti-viral activity of culinary and medicinal mushroom extracts against dengue virus serotype 2: an in-vitro study. BMC complementary and alternative medicine. 2019;19(1):260.
  83. Adotey G, Quarcoo A, Holliday J, et al. Effect of immunomodulating and antiviral agent of medicinal mushrooms (immune assist 24/7 TM) on CD4+ T-lymphocyte counts of HIV-infected patients. International Journal of Medicinal Mushrooms. 2011;13(2):109–113.
  84. Kidukuli AW, Mbwambo ZH, Malebo HM, et al. In vivo antiviral activity, protease inhibition and brine shrimp lethality of selected Tanzanian wild edible mushrooms. Journal of Applied Biosciences. 2010;31(1):1887– 1894.
  85. Ogbole O, Segun P, Akinleye T, et al. Antiprotozoal, antiviral and cytotoxic properties of the Nigerian Mushroom, Hypoxylon fuscum Pers. Fr.(Xylariaceae). ACTA Pharmaceutica Sciencia. 2018;56(4):43–56.
  86. Krupodorova T, Rybalko S, Barshteyn V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virologica sinica. 2014;29(5):284–290.
  87. Faccin LC, Benati F, Rincão VP, et al. Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Letters in applied microbiology. 2007;45(1):24–28.
  88. Lee D, Kim SC, Kim D, et al. Screening of Phellinus linteus, a medicinal mushroom, for anti-viral activity. Journal of the Korean Society for Applied Biological Chemistry. 2011;54(3):475–478.
  89. Roy D, Ansari S, Chatterjee A. In Vitro Search for Antiviral Activity against Human Cytomegalovirus from Medicinal Mushrooms Pleurotus sp. and Lentinus sp. J Antivir Antiretrovir. 2020;12(3):201.
  90. Sevindik M, Pehlivan M, Dogan M, et al. Phenolic content and antioxidant potential of Terfezia boudieri. Gazi University Journal of Science. 2018;31(3):707–711.
  91. Blagodatski A, Yatsunskaya M, Mikhailova V, et al. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget. 2018;9(49):29259.

Corresponding Author

Kabir Singal

JSS Medical College, Mysore, Karnataka, India