A Study of Corneal Parameters in Myopic Patients

Authors
Malarvizhi C¹, Chitra Raghavan²*, Valsa T Stephen³
Regional Institute of Ophthalmology, Thiruvananthapuram, Kerala, India
*Corresponding Author
Chitra Raghavan
Associate professor, Regional Institute of Ophthalmology, Thiruvananthapuram-695001, India
Phone number: +91-9387803234, Email: rameshtalya@gmail.com

Abstract
Purpose: To study the central corneal thickness, corneal curvature and axial length in patients with myopia.
Methods: 64 eyes of 32 myopic patients were included in this cross sectional study. Central corneal thickness, axial length and corneal curvature were measured using ultrasonic pachymeter, A SCAN ultrasonic instrument, auto refractometer respectively. Correlation between these three variables was analysed.
Results: The degree of myopia ranges from -0.5 to -16 D (3.5±3.0D). The mean CCT was 540.9±33.36µm. Mean axial length was 24.5±1.4mm. Mean corneal curvature was 44.08±1.35D. CCT showed a statistically significant positive correlation with degree of myopia (r=0.298, p=0.017), and axial length (r=0.276, p=0.027). A statistically significant negative correlation was found between axial length and corneal curvature (r= -0.443, p = <0.001). A statistically significant association was found between axial length and degree of myopia (p =<0.001). In this study, 31.3% were males and 68.7% were females. Mean age was 27.6±3.8 years. Axial length showed a statistically significant association with age and sex. However, CCT didn’t show any association with age and sex.
Conclusion: This study showed a statistically significant positive correlation between CCT, degree of myopia and axial length. CCT didn’t show any correlation with corneal curvature. CCT didn’t show any significant association with age and sex. Axial length showed a highly significant positive correlation with the degree of myopia and a statistically significant negative correlation with corneal curvature. Axial length showed a statistically significant association with age and sex.
Keywords: Central corneal thickness, axial length, corneal curvature, myopia.

Introduction
Myopia is a type of refractive error in which parallel rays of light coming from infinity are focussed in front of the retina when accommodation is at rest. Eye ball elongates during myopia progression. It is associated with increased axial length, deepening of anterior chamber and greater vitreous depth, retinal thinning with lattice degeneration and retinal detachment, decreased choroidal circulation, and thin sclera. Thus, parameters like corneal curvature, AL has to be evaluated in myopic individuals. Most popular refractive surgery such as LASIK performed on thin corneas may result in corneal perforation and post-operative corneal ectasia. Pre-
operative CCT measurement is needed to prevent these complications. Primary open angle glaucoma (POAG) is one of the common ocular associations of myopia. IOP measurement is central corneal thickness (CCT) dependent. Hence, CCT has to be evaluated in myopic individuals. The aim of this study is to evaluate the central corneal thickness, corneal curvature and axial length in myopic individuals.

Materials and Methods
This was a cross sectional study performed between January 2016 to January 2017, and enrolled patients visiting outpatient department of our institution, after obtaining informed consent. 64 eyes of 32 patients within 22-39 years were included. Exclusion criteria were history of previous ocular surgeries, glaucoma, Diabetes Mellitus, contact lens use, any corneal pathology, astigmatism of more than 2.00D.

After detailed ophthalmological evaluation, central corneal thickness measured with Ultrasonic Pachymeter (Sonomed Pascan 300P), corneal curvature measured with auto ref/keratometer (URK-700) and corneal topography (CT-1000 SHIN-NIPPON), axial length of the eye ball measured with A-scan ultrasonic instrument (MARVEL A/B-scan). Statistical analysis was done using Statistical Package for Social Sciences version 22 (SPSS Inc.). Correlation between variables was studied with Karl Pearson’s correlation co-efficient. Relationship between two quantitative variables was found out using t test (t), relationship between more than two groups was found out using ANOVA test (F). A P-value of less than 0.05 was considered statistically significant.

Results
Among the total 32 patients, 68.7% were females and 31.3% were males.

Table 1: Distribution of refractive error

<table>
<thead>
<tr>
<th>SPHERICAL EQUIVALENT</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-3.0</td>
<td>38</td>
<td>59.4</td>
</tr>
<tr>
<td>3.25-6</td>
<td>17</td>
<td>26.6</td>
</tr>
<tr>
<td>>6</td>
<td>9</td>
<td>14.1</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: CCT and gender

<table>
<thead>
<tr>
<th>Sex</th>
<th>N</th>
<th>CCT (µm)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>541.2</td>
<td>3.96</td>
<td>0.042</td>
</tr>
<tr>
<td>Female</td>
<td>44</td>
<td>540.8</td>
<td>3.06</td>
<td>0.967</td>
</tr>
</tbody>
</table>

There was no statistically significant association was found between CCT and gender (p = 0.967).

Table 3: CCT and age

<table>
<thead>
<tr>
<th>Age in years</th>
<th>N</th>
<th>CCT (µm)</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-28</td>
<td>40</td>
<td>546.13</td>
<td>25.03</td>
<td>1.398</td>
</tr>
<tr>
<td>29-34</td>
<td>18</td>
<td>530.61</td>
<td>45.93</td>
<td>0.255</td>
</tr>
<tr>
<td>35-39</td>
<td>6</td>
<td>537.33</td>
<td>36.76</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>540.94</td>
<td>33.36</td>
<td></td>
</tr>
</tbody>
</table>

There was no statistically significant association was found between CCT and age (p = 0.255).

Table 4: CCT and myopia

<table>
<thead>
<tr>
<th>Pearson Correlation</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation Between</td>
<td>0.298</td>
<td>0.017</td>
</tr>
<tr>
<td>CCT and degree of myopia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistically significant positive correlation was found out between CCT and degree of myopia (p= 0.017).
Statistically significant positive correlation was found out, while correlating CCT with AL ($r=0.276$, $p=0.027$).

A negative correlation was found out between CCT and corneal curvature ($r=-0.018$), but it was statistically not significant ($p=0.887$).

A statistically significant association was found out between axial length and age ($p=0.023$).

The AL seems to be increased when the degree of myopia increased. This was statistically significant ($p<0.001$).

When AL length increased the corneal curvature was decreased. It was statistically significant ($p<0.001$).
There was a negative correlation between AL and corneal curvature (r= -0.443), and it was statistically significant (p=<0.001).

Discussion
This study was attempted to find out the relationship between the degree of myopia and central corneal thickness, axial length and corneal curvature.

CCT and Degree of Myopia
The degree of myopia ranges from -0.5 to -16 D. The mean refractive error in this study group was 3.5±3.0 D. Myopes were divided into 3 groups and analysed. Patients with SE of 0.5 to 3 D had the CCT of 536.6±33.7μm, patients with SE of 3.25-6.0D had the CCT of 540.6±36.8μm and patients with the SE of >6 D had 560±17.6μm. A statistically significant positive correlation was found out between degree of myopia and CCT (p=0.017).

Similar to our study a study done by Xiao gang Wang et al[1], showed thicker CCT in the high myopes, and it was statistically significant.

In contrast, Study done by Von Bahr et al[2], showed thinner CCT in myopic population.

CCT and Axial Length
A statistically significant positive correlation was found out, while correlating CCT with AL (r=0.276, p=0.027).

Similar to our study, Lee et al[3] studied 1011 Korean myopic patients, to find out the relationship between refractive error and optical components and found out a positive correlation between CCT and AL.

In contrast, Oliveira et al[4] studied 140 eyes with mean refractive error of -1.3+-5.0D and found no statistically significant correlation between CCT and axial length (P=0.4).

CCT and Corneal Curvature
In our study, there was a negative correlation between CCT with corneal curvature(r=-0.018), but it was statistically not significant (p=0.887).

Similar to our study, a study done by Cho P et al[5], in Hong Kong showed no correlation between CCT and corneal curvature.

In contrast, a cross sectional study done by Suzuki et al[6], in Japanese population showed a positive correlation between corneal curvature and CCT.

Axial Length and Corneal Curvature
Patients with the axial length of >26mm had CC of 43.6D when compared with patients with the AL of ≤24mm. When AL length increased the corneal curvature was decreased. A negative correlation was found out between AL and corneal curvature(r= -0.443), and it was statistically significant (p=<0.001).

COMET (Correction of Myopia Evaluation Trial) study was done to find out the relationship between AL and CC over 14 years. The mean axial length at baseline was 24.14 mm, and at 14 years was 25.40 mm. At 14 years the mean axial length increased to 25.40 mm. Baseline corneal curvature was 44.11D and at 14 years the average corneal curvature was 43.98 D. Baseline refractive error was −2.38 D at 14 years −5.17 D. They found out a significant (p < 0.0001) flattening in corneal curvature. The results were similar to our study.

In contrast to our study, Carney et al found out patients with greater axial lengths had steeper central corneal curvatures. In this study corneal curvature was determined in 113 eyes using Topographic Modelling System.
Axial Length and Refractive Error
In this study the AL in patients with the SE of 0.5-3.0D was 23.8±0.8mm, and it was increasing up to 26.7±1.6mm in patients with the SE of >6.0D. When degree of myopia increased AL also increased. This was statistically significant (p<0.001). Similar to our study, a study done by Llorente et al[7] showed that axial length was significantly higher in myopes than hyperopes. The spherical equivalent in myopic group ranged from -1.2 to -7.6 D (-3.8±2.4 D).

Similar to our study, a study done by Selovic et al[12] studied 1,600 Croatian schoolchildren and found that boys have a significantly longer axial length than girls (p < 0.01).

Conclusion
This study showed a statistically significant correlation between CCT, degree of myopia and axial length. CCT didn’t show any correlation with corneal curvature. Axial length showed a highly significant positive correlation with the degree of myopia and a statistically significant negative correlation with corneal curvature. CCT didn’t show any significant association with age and sex. Axial length showed a statistically significant association with age and sex.

References
1. Corneal thickness, epithelial thickness and axial length differences in normal and high myopia. Xiao gang Wang†, Jing Dong† and Qiang Wu BMC Ophthalmology 2015:49
https://doi.org/10.1186/s12886-015-0039-6
4. Oliveira C., Tello C., Liebmann J., Ritch R.
Central corneal thickness is not related to anterior scleral or axial length. J Glaucoma. 2006

