Study of Post-operative Surgical Site Infection in Patients of Emergency Laparotomy in Tertiary hospital

Authors
Dr S B Ratnakishore MS\(^1\), Dr Paila Bhagyaa Sri\(^2\), Dr Dumpala Lalitha Kumara\(^3\), Dr Lakshmi Prasanna\(^4\), Dr Tagore\(^5\)
\(^1\) Asst Professor of General Surgery Department, KGH,
\(^2\) Post Graduate of General Surgery Department, KGH, \(^3\) Post Graduate of General Surgery Dept, KGH
\(^4\) Post Graduate of General Surgery, KGH, \(^5\) Post Graduate of General Surgery, UGH

Abstract
Introduction: Surgical site infection classified as Major SSI and minor SSI. A major SSI is defined as a wound that either discharges significant quantities of pus spontaneously or needs a secondary procedure to drain it and with systemic signs such as tachycardia, pyrexia and raised white cell count. Minor SSI may discharge pus or infected serous fluid but are not associated with excessive discomfort, systemic signs or delay in return home.

Aims and Objective: a) To study course of post operative surgical site infection in emergency laparotomy.

Materials and Methods: Prospective observational study conducted in KGH vishakapatnam from Nov 2018 to July 2019

Results: SSI was observed in 239 patients out of 311, male are more affected than female. Patient with Surgical site infection increases hospital stay and morbidity. Patient associated with anemia has increase risk of developing Surgical site infection.

Conclusions: Surgical site infection increase the morbidity and hospital stay. There should be much more effort to decrease the incidence of Surgical site infection.

Introduction
The term surgical site infections (SSIs) means post-operative wound infection and is defined as that infection presenting up to 30 days after a surgical procedure if no prosthetic is placed and up to 1 year if a prosthetic is implanted in the patient. SSI remains a major limiter of surgical horizons inspite of advances. Nosocomial infections third most frequently accounting for nearly 20% among hospital in patients.

Nosocomial infection has high incidence in surgery department where accumulating evidence suggests advances have been made in infection control practices, including improved operating room ventilation, sterilization methods, barriers, surgical techniques, and availability of antimicrobial prophylaxis. In emergency surgery the risk of infection is greater in all categories. The risk of wound infection is effected by the degree of contamination and also by multiple risk factors include diabetes mellitus, hypoxemia, hypothermia, immunosuppressive agents, and malnutrition.

SSIs results in increased morbidity, mortality, and do have a major impact on the cost of healthcare. The primary objectives of this study were to
describe the incidence and risk factors associated with SSI in patients undergoing emergency laparotomy. The secondary objectives were to study the microbiological pattern of SSI in our population and their antibiotic sensitivity, and to study the effect of SSI on postoperative length of stay.

Materials and Methods

Study Design and Participants

We conducted a prospective observational study at King George hospital Vishakapatnam Andhra Pradesh. The target population consisted of all patients aged 14 years or more undergoing emergency laparotomy from Nov 1, 2018, to July 31, 2019. We excluded patients who left the operating theatre with an open packed wound or with a vacuum-assisted dressing. Wound infection was diagnosed if any one of these criteria was fulfilled: Serous or nonpurulent discharge from the wound, pus discharge from the wound, the wound with the sign of inflammation and when wound was opened by the surgeon due to the localized collection. Swabs from the infected wound site were collected and sent for cultures and antibiotic sensitivity. Percentage of relevant data was calculated and studied. Ethics approval was obtained from the institutional review board.

Data Collection

1) Variables included in the analysis were patient preoperative risk factors (diabetes mellitus, immunosuppression,) smoking status, body mass index, demographic characteristics and preoperative hemoglobin and albumin levels.

2) Operative variables included type of surgery performed, duration of surgery, use of prophylactic antibiotic, wound contamination class, and drain use.

3) Outcome measures studied in addition to wound infection included admission to the intensive care unit, length of stay, postoperative complications and death.

Wound assessment was done with the Centres for Disease Control and Prevention and National Healthcare Safety Network definition of SSI (table 1) in patient whom follow up was done for 30 days inward, op, or through telephonic interview. The results of culture and antimicrobial sensitivity were included.

<table>
<thead>
<tr>
<th>Superficial incisional SSI</th>
<th>Deep incisional SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurs within 30 d</td>
<td>Occurs within 30 d</td>
</tr>
<tr>
<td>Only skin and subcutaneous tissue</td>
<td>Deep soft tissues (fascial and muscle layers)</td>
</tr>
<tr>
<td>Patient has at least 1 of the following:</td>
<td>Patient has at least 1 of the following:</td>
</tr>
<tr>
<td>a. Purulent drainage from incision</td>
<td>a. Purulent drainage from deep incision</td>
</tr>
<tr>
<td>b. Organisms identified from wound</td>
<td>b. An infection that spontaneously debises or is deliberately opened or aspirated by surgeon, with or without culture</td>
</tr>
<tr>
<td>c. Superficial incision that is deliberately opened by surgeon</td>
<td>c. Abscess or other evidence of infection that is detected on gross anatomic or histopathologic examination, or imaging</td>
</tr>
<tr>
<td>d. Diagnosis of SSI by surgeon</td>
<td></td>
</tr>
<tr>
<td>And patient has at least 1 of the following: pain or tenderness, localized swelling, erythema or heat</td>
<td>And patient has at least 1 of the following: fever (temperature > 38°C), localized pain or tenderness</td>
</tr>
</tbody>
</table>

SSI = surgical site infection.

Statistical analysis

All values are multiplied by 100 to get percentages. The data was tabulated in Microsoft excel. Data analysis was done using SPSS.

Results

In total 311 patient out of which 146 are males and 93 are females (M:F=2:1). Their ages were between 14 to 85 years with mean age of 35.66±12.57 years. The pre-operative hemoglobin concentration of the patients was 3.2–15.3 g/dl (mean 10.29 ± 1.71 g/dl). A total of 102 (40.8%) patients had pre-operative anemia with hemoglobin concentration <10 g/dl. Relationship between age group and incidence of surgical site infection.
Regarding age group patients of age group 31–50 years were more prone to wound infections (42.7%).

Out of 311 patients with emergency abdominal operations, the rate of SSI in different operations was observed. The highest rate of SSI (50.1%) was in laparotomy with ileostomy for ileal perforation and appendicular perforation.
With regard to association between delay to initiate operation and rate of SSI it was observed that rate of infection increased as the time lapse between the appearance of first symptom and initiation of operation was increased.

In relation to comorbidity, it was observed that 159 patients had comorbid disorders associated with the main surgical disease and 152 patients had no comorbid disorder. Among the patients with comorbid disorders 146 (91.8) developed SSI. SSI was clinically diagnosed in 239 patients giving a incidence rate of 76.8%. Of which 169 (69.03%) were superficial SSI while 74 (30.9%) were deep SSI. Of which 186 (77.8%) diagnosed on postoperative day 3, 55 (23%)
diagnosed on postoperative day 5 and 18 (7.5)
diagnosed on postoperative day 7. Of which
179(74.8) resolved by the 9-11th day, while
remaining resolved by the 15-17th day.
Multiple samples of discharge/pus from the
wounds were sent for culture and sensitivity test.
Escherichia coli were found as the most common
organism (129 among 239 cases) causing 53.9%
of the surgical site infection.
Bacterial isolates obtained from samples of SSI
(n=239)

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>n %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>129</td>
</tr>
<tr>
<td>Staphylococcus aureus*</td>
<td>36</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>46</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>28</td>
</tr>
</tbody>
</table>

Discussion
The emergency laparotomy for acute abdomen is a
major challenge for a surgeon. Post-operative care
and pre-operative preparations is important for a
successful outcome. Deficient care in either may
produce unsatisfactory results irrespective of the
standard of surgery. Post-operative SSI is the
second most common type of adverse effect
occurring in hospitalized patients following
surgery and one of the most important causes of
increased stay in hospital in surgically treated
patients.
SSI surveillance is very important to hospital
infection control and quality improvement
programs, with feedback of SSI rates being an
integral component of SSI reduction strategies.
The incidence of SSI varies widely from hospital
to hospital and also from one geographic location
to another these patients incur a higher cost
because of increased days of hospitalizations,
more post operative care, potential readmission to
the hospital, and further surgical management.
As documented in the previous literature, in our
study overall rate of SSI was 76.8% which is
higher. Whereas other literature of Rajesh K.
abbe 25.43%, Satyanarayan 25.2%, and
Murtaza et al. 21.6% but noted higher (38.1%) in
the study of Adejumo et al. It was observed that
rate of SSI in different age groups it was highest
58.9% in the literature of study done by Adejumo
et al.
In the 31–50 years age group in our study it was
42.8%. Regarding sex distribution of the, among
the total 311 patients male was more prone to
infection as compared to female which was same
as other studies with different values.
It was observed that host factors such as type of
disease, presence/absence
of comorbidity, and types of comorbidity, and
other factors such as delay to initiate operation
and duration of surgery were associated with the
rate of SSI. The highest rate of infection (50.1)
was in case of ileostomy done and appendicular
perforation.
The rate of SSI increased as the time lapse
between first manifestation of symptoms and
initiation of operation SSI, it was observed that
the SSI rate was 19.9%, 28.9%, 42.7%, and 70.2%
when operation was initiated <24 h, 24–48 h, 48–
72 h, and >72 h, respectively. With different
values, result was same as other studies in which
infection rate was higher with time duration
increases between onset of symptoms and
operation. The rate of SSI increased statistically
very significantly with that of the duration of the
operation. Previous studies have also assessed the
influence of prolonged operative time as a risk
factor for SSI.
In relation to the appearance of infection, it was
observed that most of the infections. 186 (77.8%)
diagnosed on postoperative day 3, 55(23%)
diagnosed on postoperative day 5 and 18 (7.5)
diagnosed on postoperative day 7. Of which
179(74.8) resolved by the 9-11th day, while remaining resolved by the 15-17th day.

In relation to comorbidity, it was observed that 80 patients had diabetes, 102 anemia and 80 patient had other comorbid disorders like smoking, CVA, CAD etc associated with the main surgical disease percentage of SSI was higher in a diabetic patient (45%) when compared with a patient with no comorbid condition SSI was higher in associated with the comorbid condition Smoking delays the healing of SSIs by causing local and systemic vasoconstriction. This results in tissue hypoxia and hypovolemia.

As documented in previous studies severely anemic patients had the highest risk of getting SSI. A low hemoglobin concentration creates the risk of SSI by tissue hypoxia and impairment to tissue healing.

Out of 239 patients 129 showed growth of microorganism E. coli was found in 53.9% cases. Staphylococcus aureus was causing 24.2%. These are supported by the findings of a study conducted by Sultan et al. in 2007.

For the prevention of SSI antibiotics such as ceftriaxone, piperacillin-tazobactam, ciprofloxacin, and metronidazole was used in pre-operative and post-operative period in all of the cases.

Conclusion

SSI is leading cause of post-operative morbidity and increased hospital stay. Still proper surveillance to be conducted to control the rate of Surgical site infection. Improper antibiotic usage to be decreased to decrease the resistance rate.

References