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Abstract 

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder in which there is  insulin resistance and it is 

experienced by insulin sensitive tissues like skeletal muscle, adipose tissue, liver, and small part of cardiac 

tissue. The present study was conducted for 12 weeks in the male Wistar rats to investigate the effect of 

High Sugar Diet (HSD) and melatonin in relation to plasma glucose, serum levels of interleukin-6 (IL-6), 

and levels of Magnesium (Mg) in serum, liver, pancreas and kidney tissues. The study also investigate that 

melatonin administration increases the Mg levels in serum and above mentioned tissues. We observed 

increased levels of plasma glucose, serum IL-6, and lower levels of Mg in serum and kidney tissues in HSD 

rats when compared with control rats. After administration of melatonin to HSD rats, significant decrease 

was observed in the values of plasma glucose and serum IL-6. On the contrary, we observed significant 

increase in the levels of Mg in the serum and kidney tissues when melatonin was administered to HSD rats. 

Thus, we conclude that the response to melatonin administration for glucose, Mg, and IL-6 parameters is 

related to the degree of insulin resistance and the duration of the study. The response to melatonin is also 

related to physical stress, to the types of diet consumed.  
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Introduction 

Worldwide Type 2 Diabetes Mellitus (T2DM) is a 

major medical, social, and economic problem and 

is the leading cause of hospitalization for patients. 

T2DM is a metabolic disorder in which there is  

insulin resistance (IR) and it is experienced by 

insulin sensitive tissues like skeletal muscle, 

adipose tissue, liver, and small part of cardiac 

tissue
[1]

. Such tissues eventually experience a dys-

balance between the catabolism and anabolism of 

bio-molecules including carbohydrates, proteins, 

and lipids
[1-3]

. In due course of time after IR, the 

glucose increases in blood (hyperglycemia) 

primarily, which later in the presence of reactive 

species (also due to hyperglycemia), conjugates 

with building blocks of organism like proteins, 

lipids, and deoxyribonucleic acid (DNA) 

respectively
[2-4]

. This irreversible conjugation 

leads to a conformity change in bio-molecules. 

Certain changes in structure induce a pro-

inflammatory response and therefore hyper 

activating immune cells lead to a low grade 
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inflammation which persists in T2DM
[5,6]

. 

Apparently, the pro-inflammatory response 

triggers heterogeneous group of secondary 

disorder like atherosclerosis, cardiovascular 

disease, nephropathy, retinopathy, and peripheral 

neuritis in T2DM
[1-4]

. In short, hyperglycemia has 

a principle factor in the development and 

progression of diabetes and eventually its 

complications.   

Interleukin-6 (IL-6) is an important biomarkers 

involved in IR
[7]

 as well as in inflammation
[8]

. IL-

6 is reported to involve in cellular responses to 

stimuli such as free radicals and oxidative stress 
[9]

. Awazawa et al
[10] 

stated that IL-6 down-

regulates proteins such as IRS-1 involved in IR. 

However, Yu et al
[11]

., found that improved 

glycaemic control is associated with increased 

PPAR-g and decreased IL-6 protein expression in 

pancreas.  

Magnesium (Mg) is an essential cofactor for a 

number of kinases that are important in 

carbohydrate and lipid metabolism, including 

hexokinase, phosphofructokinase, and adyenylate 

cyclase
[12]

. The mechanism by which Mg exerts 

anti-diabetic effects has not been studied in detail. 

However, Mg stimulates the activity of 

glucokinase in the liver and improves pancreatic 

beta islet cell function to enhance insulin 

regulation and secretion
[13]

. Studies have shown 

lower levels of Mg in patients suffering with 

T2DM
[14-17]

. In addition, a study has shown that 

lower level of Mg is associated with IR
[16,17]

. The 

mechanism behind hypomagnesemia in T2DM is 

not clearly known. Garland et al., reported that 

glycosuria which is present in the diabetic state 

may be the cause for lower levels of Mg in 

diabetes
[18]

.  

Melatonin is a hormone secreted in vertebrates in 

large amounts by pineal gland and small quantities 

by extrapineal sites including retina, Harderian 

glands, and gastrointestinal tract
[19]

. A study had 

suggested that melatonin greatly enhances glucose 

uptake in a murine skeletal muscle cells
[20]

. It was 

reported that melatonin is capable of enhancing 

glucose disposal in obese rats
[21,22]

. Melatonin is 

profoundly known for alleviating oxidative stress 

in obese rats
[23]

. Elevated level of IL-6 is 

associated with inflammatory disease when there 

is lower concentration of melatonin is present in 

the blood
[24]

. In another study it has demonstrated 

that melatonin enhances the synthesis of IL-6
[25]

. 

However, Clapp-Lilly et al, reported that 

administration of melatonin reduced the IL-6 

production amyloid-β brain slices
[26]

.  

Therefore, the aim of the present study was to 

investigate the effect of HSD and melatonin in 

relation to plasma glucose, serum levels of IL-6, 

and levels of Mg in serum and liver, pancreas and 

kidney tissues. The study also investigate that 

melatonin administration increases the Mg levels 

in serum and above mentioned tissues.  

 

Materials and Methods 

High Sugar Diet (HSD) was used to induce IR to 

derange the homeostasis of glucose and produce 

hyperglycemia, and eventually T2DM as 

previously described
[27,28]

. Acclimatization period 

for rats was given for 10 days. The animals were 

kept at room temperature at 25ᵒC with 12 hr dark 

and light cycles. Both control and experimental 

rats were kept fasting for 12 hr prior to HSD 

induction. Rats developed IR, showed 

hyperglycemia (blood sugar > 200 mg/dl or > 11.1 

mmol/L), weight increased, increased water intake 

and became less active. The total duration of 

experiment was 12 weeks excluding the 

acclimatization period. HSD consists of white 

bread and containing 1 mg of sugar per one ml of 

water.  

The control rats were given limited amount of 

food and water per day. On the other hand, to 

determine the effect of HSD in the development 

of IR, hyperglycemia, IL-6, and Mg status of the 

animals, thus, these animals received unlimited 

HSD until the end of the study. To the third group 

to determine the effect of melatonin in the 

development of IR, T2DM, and magnesium status 

of the animals, thus, these animals received 

unlimited HSD and melatonin of 200 

μg/animal/day until the end of the study. Oral 
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gavage was the administration route of melatonin 

for experimental rats.  At the end of 12 weeks, all 

the rats used in the study were fasted overnight. 

The next day morning, the study rats were 

anesthetized with chloroform and blood samples 

were collected by cardiac puncture. Collected 

blood of rats was centrifuged at 2000 g for 15 

minutes and serum was isolated and was stored at 

80ᵒC for analyses of parameters. The tissue 

samples including liver, pancreas, and kidney 

were removed using laprotomy procedure. Tissues 

were cleaned with normal saline and were stored 

at 80ᵒC. The tissues were homogenized in 50mM 

phosphate buffer using a Remi high speed 

homogenizer. The homogenate was then 

centrifuged at 2000 g for 30 minutes and the 

resultant supernatant was used for measurement of 

interleukin (IL-6).  

Plasma glucose was estimated for control as well 

as experimental rats at the end of the study period 

after a 12 hr fast using a commercial Accurex 

glucometer. Mg and IL-6 in tissues were 

estimated according to the instructions provided in 

the Abcam Mg colorimetric kit and IL-6 single 

analyte elisa kit respectively.  

 

Statistical Analysis 

Biochemical parameters mentioned in the study 

were measured in the blood, liver, kidney, and 

pancreas tissues obtained from control and 

melatonin treated animals after the termination of 

the study.  All the values obtained were expressed 

as mean ± SD. The statistical analysis of results 

was carried out by one way analysis of variance 

(ANOVA) followed by Bonferroni test. 

 

Results 

In the Fig. 1, HSD-fed rats have high plasma 

glucose levels compared to control rats (P <0.05). 

There was also significant increase in weight (230 

%) of the animals in the HSD-fed group as 

reported earlier [27,28]. When HSD group rats’ 

plasma glucose was compared with the HSD 

group rats treated with melatonin group, we 

observed a significant change in the level of 

plasma glucose concentration (P <0.05). The data 

(Fig. 1) suggest that HSD induces hyperglycemia 

and when the experimental conditions are 

provided melatonin enhances the disposal of 

glucose. The data in Fig. 1 also shows that the 

level of pro-inflammatory cytokine IL-6 was 

increased in HSD fed rats when compared with 

control group rats (P <0.05). Melatonin 

significantly reduced the levels of IL-6 even after 

consuming experimental unlimited sugar diet 

(HSD) (P <0.05). On the contrary, the level of 

serum Mg was significantly increased after 

treatment with melatonin (Fig. 1) (P <0.05).  

It is evident from the results shown in Fig. 1 that 

rats develop hyperglycemia due to HSD have 

lower levels of Mg and high levels of IL-6 both in 

plasma and  tissues. The changes in the levels of 

serum Mg and IL-6 are more obvious when the 

ratio between Mg and IL-6 (Mg/IL-6) is compared 

between the groups as shown in Table 1 (P 

<0.05). It is evident from these results that the 

balance between Mg and IL-6 is altered to a 

significant degree in HSD fed rats compared with 

the control group rats (P <0.05). This alteration in 

the Mg/IL-6 ratio was restored to near normal 

levels in HSD group rats treated with melatonin (P 

<0.05). These results suggest that melatonin has 

the ability to normalize the level of Mg and 

suppress the synthesis of IL-6 (Table 1, Fig. 1).  

In Fig. 2, we observed significant difference in rat 

tissues of pancreas and kidney in the levels of Mg 

when compared between control group versus 

HSD group and HSD group versus 

HSD+melatonin group (P <0.05). On the contrary, 

no significant difference was observed in the liver 

tissue of rats in the levels of Mg when compared 

between control versus HSD, control versus 

HSD+melatonin, and HSD versus 

HSD+melatonin (P <0.05). 
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Figure 1 Concentration of plasma glucose, serum IL-6, and serum magnesium in groups of control, High Sugar Diet 

(HSD), and HSD treated with melatonin (HSD+Melatonin). 

 

 
Figure 2 Concentration of serum magnesium in rats of control liver (CL), control pancreas (CP), control kidney (CK), 

High Sugar Diet fed rats liver (HL), HP, HK, and melatonin treated HSD liver (H+M L), H+M pancreas (H+M K), 

and H+M kidney (H+M K).   

 

Table 1 Effect of High Sugar Diet (HSD) and melatonin treatment on the Magnesium/IL-6 ratio in the serum of male 

Wistar rats 

 

 

 

 

 

Discussion 

The present study observed hyperglycemia in the 

rats consuming HSD (2
nd

 group) compared to 

control group rats (Fig. 1). Similarly, the HSD 

group rats also observed increased level of pro-

inflammatory cytokine IL-6 compared to control 

rats. It is clearly evident from the previous studies 

that consumption of high caloric diet along with 
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less amount of physical activity leads to obesity 
[29-32]

. Since, the utilization of consumed calories 

if not broken down to generate energy in the form 

of ATP to perform physical activity, will lead to 

accumulation of excess consumed calories in the 

form of lipid molecules in adipose tissue
[29,30]

. 

There are reports suggesting that intake of excess 

calories lead to obesity
[31,32]

. Thus, the present 

report infers that due to unlimited intake of HSD 

progressed towards the increased weight in 

animals (data not shown). Moreover, weight 

increase of the animals needs more oxygen 

consumption to metabolize the bio-molecules to 

sustain the needs of the newly accumulated 

molecules around the body surface of the animals. 

Evidences suggest that oxygen reduces to water 

by inducing free radical production, which 

eventually cause oxidative stress
[33,34]

. Oxidative 

stress affects the nuclear transcription factors to 

generate pro-inflammatory cytokines. 

Experimental and clinical studies reported that IL-

6 is known to induce IR in experimental animals 

and humans as well
[6-8]

. In the present study it is 

clear that increase in IL-6 levels in the HSD group 

rats is the reason for hyperglycemia which is the 

result of IR. After treatment with melatonin to 

HSD rats (3
rd

 group), we observed lower 

concentrations of glucose and IL-6. Melatonin is 

known to reduce oxidative stress by combating the 

free radicals, thus reducing oxidative stress, in 

turn reducing the levels of IL-6 and improving 

insulin sensitivity
[22,23]

.  Since, the reduction of 

free radicals leads to better disposal of glucose 

from the blood. 

We report lower levels of Mg in serum and kidney 

tissue in HSD rats (2
nd

 group) compared with 

control rats serum and kidney tissue. However, 

significant difference was observed in melatonin 

treated HSD rats (3
rd

 group) in the levels of serum 

Mg. Similarly, the present study also report 

significant increase in the levels of Mg in kidney 

tissue of melatonin treated HSD rats (3
rd

 group) 

when compared with HSD rats (2
nd

 group). IL-6 is 

the reason for lower levels of Mg in HSD serum 

and kidney tissues (2
nd

 group). It is demonstrated 

that insulin sensitivity is required for the 

reabsorption Mg in the renal tubules
[35]

. Studies 

have shown that concentration of Mg inside the 

cell is purely dependant on the insulin as it 

regulates the stimulation of ATPase pumps and 

increasing free Mg entry into the cells
[35-37]

. This 

also causes the influx of calcium ions which in 

turn closes calcium channels, which leads to 

improvement of insulin sensitivity
[38-40]

. The 

lower Mg level in the serum and kidney tissues is 

attributed to the consequence of IR
[35,36,40]

. 

Therefore, the reduction in insulin resistance by 

melatonin administration and consequent 

improvement in insulin function would increase 

the reabsorption and also prevent the loss of Mg 

from the kidney (in 3
rd

 group).  

Another important aspect of the present study is 

the observation that even serum levels of Mg and 

IL-6 were reversed to relatively near normal level 

following melatonin administration (in 3
rd

 group). 

Thus, the present study also shown that it is 

possible to restore the level of Mg and IL-6 to 

near normalcy only when glucose levels are 

restricted to below the cut-off level to diabetes 

mellitus. The present study differs from Navarro-

Alarcon et al
[41]

., in many aspects. For example, 

Navarro-Alarcon et al
[41]

., used ZDF and ZL rats 

in their study and reported only Mg status in 

various tissues. On the other hand, we used HSD 

to induce hyperglycemia and measured the levels 

of plasma glucose, change in weight, and Mg 

levels in serum and also in tissues including liver, 

pancreas, and kidney. There are no reports as per 

to our knowledge as to the effect of melatonin on 

Mg and IL-6 levels in HSD induced diabetes 

mellitus. Our study also differs from that of 

Navarro-Alarcon et al
[41]

., in that we used oral 

gavage technique to administer melatonin to 

experimental animals and showed that even oral 

melatonin is equally effective in restoring the Mg 

and IL-6 levels to normalcy in HSD induced 

diabetes. 
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Conclusion 

The present conclude that the response to 

melatonin administration for glucose, Mg, and IL-

6 parameters is related to the degree of insulin 

resistance and the duration of the study. The 

response to melatonin is also related to physical 

stress, to the types of diet consumed. The 

beneficial effects could be attained when the 

experimental conditions are provided. In view of 

the present study results, it will be interesting the 

possible use of melatonin to prevent 

hyperglycemia and to restore the dys-balance 

levels of Mg and IL-6.  
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