Level of C-Reactive Protein in Prognosis of Unstable Angina and Non ST Elevation Myocardial Infarction

Authors

Dr P.K. Agrawal¹, Dr Atul Kumar², Dr Md Tabrez Alam³, Dr Usman Rasool³
Dr Raghib Hasan³, Dr Farogh Haidry³, Dr Rakesh Raushan³

¹Professor and Head, ²Professor, ³Post Graduate Trainee
Department of General Medicine, KMCH Katihar, India

Abstract

Introduction: Acute coronary syndrome (ACS) is defined as a sudden and rapid compromise of coronary blood flow usually because of rupture of an atherosclerotic lesion and subsequent thrombus formation in the coronary artery. It includes ST Elevated MI, UNSTABLE ANGINA and NON-ST Elevation MI. C Reactive Protein is an acute phase protein produced mainly by the liver in response to interleukin 6, is a marker of inflammatory processes that contribute importantly to atherogenesis, plaque disruption and thrombosis.

Aims And Objectives

1) To find out the number of the patients with acute coronary syndrome (unstable angina and non ST elevation MI) that have raised C-reactive protein.

2) Whether there is any correlation between the severity of acute coronary syndrome and the quantitative and qualitative estimation of C-reactive protein.

3) To assess whether level of C-reactive protein bears a positive correlation with the level of cardiac enzymes.

4) To assess whether the C-reactive protein could be considered as one of the factors for risk stratification of acute coronary syndrome.

Materials and Method: 60 patients of acute coronary syndrome (unstable angina and non-ST elevation MI) admitted in Intensive Coronary Care Unit (ICCU) of Katihar Medical College & Hospital along with 30 age and sex matched healthy person as control were formed the material of the study.

Type of Study: Descriptive Study

Inclusion Criteria

1) Adult patients of both sexes

2) Informed and a written consent

3) The patient may be either a known case of ischaemic heart disease or the present attack of unstable angina may be the first manifestation of the disease.

Exclusion Criteria

1) ST –Elevated Myocardial infarction

2) Any infective or inflammatory and neoplastic condition that is known to be associated with an acute phase response thereby causing a rise in (CRP) C-reactive protein.
Introduction
Acute coronary syndrome (ACS) is defined as a sudden and rapid compromise of coronary blood flow usually because of rupture of an atherosclerotic lesion and subsequent thrombus formation in the coronary artery. It includes ST Elevation MI, UNSTABLE ANGINE and NON-ST Elevation MI.

C Reactive Proteins is an acute phase protein produced mainly by the liver in response to interleukin 6, is a marker of inflammatory processes that contribute importantly to atherogenesis, plaque disruption and thrombosis.

Aims and Objectives
1) To find out the number of the patients with acute coronary syndrome (unstable angina and non-ST elevation MI) that have raised C-reactive protein.
2) Whether there is any correlation between the severity of acute coronary syndrome and the quantitative and qualitative estimation of C-reactive protein.
3) To assess whether level of C-reactive protein bears a positive correlation with the level of cardiac enzymes.
4) To assess whether the C-reactive protein could be considered as one of the factors for risk stratification of acute coronary syndrome.

Materials and Method
60 patients of acute coronary syndrome (unstable angina and non-ST elevation MI) admitted in Intensive Coronary Care Unit (ICCU) of Katihar Medical College & Hospital along with 30 age and sex matched healthy person as control were formed the material of the study.

Type of Study: Descriptive Study

Inclusion Criteria
1) Adult patients of both sexes
2) Informed and a written consent
3) The patient may be either a known case of ischaemic heart disease or the present attack of unstable angina may be the first manifestation of the disease.

Exclusion Criteria
1) ST-Elevated Myocardial infarction
2) Any infective or inflammatory and neoplastic condition that is known to be associated with an acute phase response thereby causing a rise in (CRP) C-reactive protein.
3) Post-infarct angina patients.

Duration of Study: December 2016 to May 2018
Observation

Distribution of C-reactive protein in the study population

<table>
<thead>
<tr>
<th>CRP values (gm/L)</th>
<th>At 0 hr No of patients</th>
<th>At 6 hr No of patients</th>
<th>At 12 hr No of patients</th>
<th>At 24 hr No of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6</td>
<td>12 (20%)</td>
<td>12 (20%)</td>
<td>12 (20%)</td>
<td>12 (20%)</td>
</tr>
<tr>
<td>6 - <12</td>
<td>16 (26.67%)</td>
<td>14 (23.33%)</td>
<td>18 (30%)</td>
<td>22 (36.67%)</td>
</tr>
<tr>
<td>12 - <24</td>
<td>16 (26.67%)</td>
<td>18 (30%)</td>
<td>18 (30%)</td>
<td>16 (26.67%)</td>
</tr>
<tr>
<td>24 - 48</td>
<td>16 (26.66%)</td>
<td>16 (26.67%)</td>
<td>12 (20%)</td>
<td>10 (16.66%)</td>
</tr>
</tbody>
</table>

At 0 hr., 20% of patients had negative C-reactive protein (CRP) levels while 80% of the population had positive C-reactive protein (CRP) levels. This was equally distributed over the 3 frequency distribution ((viz. 6 <12, 12 - <24 and 24 – 48)). Those who had initial negative C-reactive protein (CRP) values remained so throughout 24 hrs following admission. At 6 hrs, 23.33% had CRP values between 6 - <12, 30% had C-reactive protein (CRP) 12 - <24 while, 26.67% had values > 24 gm/L. At 24 hr, 36.67% had values between 6 - <12, while 16.66% of population still had very high (>24 gm/L) C-reactive protein (CRP) levels.

The incidence of risk factors in the study group shows diabetes mellitus was present in 26 patients (43.33%). Thirty-two patients (53.33%) gave history of smoking. Forty patients (66.67%) were hypertensive and 24 patients (40%) were dyslipidaemics. Past history of IHD was present in 26 patients (43.33%). Hypertension was detected to be present in majority of the patients (Table-2).

Comparison of CRP level among diabetics and non-diabetics in the study population

<table>
<thead>
<tr>
<th></th>
<th>No. of patients</th>
<th>Mean CRP values ± SD (gm/L)</th>
<th>t - values</th>
<th>p - values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetics</td>
<td>26</td>
<td>14.40 ± 8.36</td>
<td>1.30</td>
<td>p < 0.1 (NS)</td>
</tr>
<tr>
<td>Non-diabetics</td>
<td>34</td>
<td>10.72 ± 6.65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The mean C-reactive protein (CRP) level among the thirteen diabetic patients in our study was 14.40 ± 8.36 gm/L and the mean C-reactive protein (CRP) level among seventeen non-diabetic patients was 10.72 ± 6.65 gm/L. Although the overall mean C-reactive protein (CRP) level was found to be higher in diabetics than non-diabetics in our study, this difference was not statistically significant (p <0.1).

Comparison of CRP level among smoker and non-smoker in the study population:

<table>
<thead>
<tr>
<th></th>
<th>No. of patients</th>
<th>Mean CRP values ± SD (gm/L)</th>
<th>t - values</th>
<th>p - values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoker</td>
<td>32</td>
<td>13.76 ± 9.46</td>
<td>1.08</td>
<td>p < 0.1 (NS)</td>
</tr>
<tr>
<td>Non-smoker</td>
<td>28</td>
<td>10.66 ± 5.98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The mean CRP level among the sixteen smoker patients in our study was 13.76 ± 9.46 gm/L and that of non-smoker was 10.66 ± 5.98 gm/L. Although the overall mean C-reactive protein (CRP) level was found to be higher among smoker in our study, this difference was not statistically significant (p <0.1).

Comparison of CRP level among hypertensive and normotensive patients in the study group:

<table>
<thead>
<tr>
<th></th>
<th>No. of patients</th>
<th>Mean CRP values ± SD (gm/L)</th>
<th>t - values</th>
<th>p - values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertensives</td>
<td>40</td>
<td>12.19 ± 6.94</td>
<td>0.116</td>
<td>p < 0.1 (NS)</td>
</tr>
<tr>
<td>Normotensives</td>
<td>20</td>
<td>12.56 ± 8.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean C-reactive protein (CRP) level among the twenty hypertensives patients in our study was 12.19 ± 6.94 gm/L and that of normotensives was 12.56 ± 8.78 gm/L. In our study, normotensives had a mean C-reactive protein (CRP) level more than the hypertensives but this small difference was not statistically significant (p <0.1).
Discussion
As regards, incidence of traditional cardiovascular risk factors in the study population, hypertension was found to be the commonest (66.67%) followed by smoking (53.33%) and diabetes and past history of ischaemic heart disease sharing the 3rd position with 43.33% each Dyslipidaemia was the C-reactive protein least common (40%) risk factor detected.

The mean value of CRP in the study population was significantly higher than that of control. (Table – 11) Higher CRP values are also reported both in ACS and IHD by number of authors like Berk BC et al8, Liuzzo G et al10, Bhagat S et al100 etc. Study of C-reactive protein in patients with acute myocardial infarction attending tertiary care teaching hospital in Saurashtra region of Gujarat, India Shripad R. Kausadikar1*, Hina A. Mehra2, Krishnakant P. Pathak shows that correlates the duration of chest pain, i.e., the time interval during which chest pain (cardinal symptom) lasted in the patients having acute myocardial infarction. It is evident from above that the maximum rise of CRP levels took place when the chest pain lasted for more than 6 hours, being 90% of the times raised between 6-12 hours and 100% of the times when the pain lasted for more than 12 hours. The p value was found to be <0.05 which is statistically significant.

Further continuing with subgroup analysis of C-reactive protein (CRP) among diabetics and non-diabetics in the study population, the difference in C-reactive protein (CRP) values between the two groups was not found to be statistically significant (Table-13). Similar statistically non-significant differences were seen between smokers and non-smokers (Table- 14) and between hypertensives and non-hypertensives (Table-15). This is in contrast to Pearson TA et al77, Haverkate F et al where a statistically significant positive correlation were established between C-reactive protein (CRP) and hypertension, smoking and diabetes. In the present study too there was trend of higher C-reactive protein (CRP) in hypertensives, smoker and diabetics, but it was not statistically significant because of small sample size.

C-reactive protein (CRP) levels in dyslipidaemics in the present study group however was higher than subjects with normal lipids and this difference was statistically significant at ‘p’ value of <0.001 (Table- 16). This again is in confirmation with Haverkate F et al.

Summary
The present study consists of 60 patients of acute coronary syndrome (unstable angina and non ST elevation myocardial infarction) and 30 age-sex matched healthy control.- The present study has shown a positive correlation with between raised C-reactive protein (CRP), high incidence of MACE and poor outcome both immediate and 1 year and 6 months follow up. There is high incidence in diabetics and smokers and hypertensives.

Hypertension was found to be the commonest risk factor followed by smoking, diabetes and dyslipidaemia.

Conclusion
The present study has shown a positive correlation between raised C-reactive protein (CRP), high incidence of MACE and poor outcome both immediate and 1 year and 6 months follow up. There is high incidence in diabetic and smokers and hypertensives.

Hypertension was found to be the commonest risk factor followed by smoking, diabetes and dyslipidaemia.

Bibliography
2. Benjamin M. Scirica, David A. Morrow. ST-Elevation Myocardial Infarction: Pathology, Pathophysiology, and clinical
features. Braunwald’s Heart Disease. Tenth Edi; Vol 2;1088-1089.

22. Journal of the American College of Cardiology Vol. 58, No. 25, 2011, C-Reactive Protein and ST-Segment Elevation Myocardial Infarction Discordance* C by Richard Conti, MD