Qualitative Detection of Some Adulterants in Milk Samples Supplied in the Twin Cities of Secunderabad and Hyderabad, Telangana

Authors
Karukonda Raju, Shobham, Aishwarya Ramanujam, Sukumaran. M.K*
Department of Biochemistry, Bhavan’s Vivekananda College, Sainikpuri, Secunderabad, Telangana, India
*Corresponding Author
Sukumaran. M.K
Department of Biochemistry, Bhavan’s Vivekananda College, Sainikpuri, Secunderabad, Telangana, India

Abstract
This study was conducted keeping in view the ever increasing reports on adulteration of natural milk with various illegal substances to increase the quantity and make more profit. Qualitative analyses for the detection of adulterants in milk samples was carried out with a standard milk adulteration kit manufactured by Himedia Laboratories, Mumbai, India. Among the different milk samples tested none of the samples were positive for cellulose (0%), benzoic acid (0%) and soap (0%). However, majority of these milk samples tested positive for maltodextrin / maltose (30%), proteins (40%), ammonium sulphate (37%), boric acid (33%) vegetable oil (43%) and pond water (nitrate-nitrogen) (50 %) respectively.

Keywords: Milk adulteration; Qualitative analysis of milk, maltodextrin/maltose, proteins, vegetable oil and pond water (Nitrate-Nitrogen).

Introduction
Milk is consumed by all age groups of human (e.g., growing children’s, young, old people and expectant mothers) because it supplies good quality proteins, fat, carbohydrates (Afzal et al., 2011) (Table 1), vitamins and minerals (i.e., provides special nutritive value) in good proportions.

Therefore, milk for human consumption should be free of any adulterant (e.g., if the product contains (i) inferior or cheaper substances in it; (ii) constituent of a product is subtracted; (iii) prepared or packed and stored under unhygienic conditions; (iv) consists of filthy, rotten, decomposed or diseased animal or vegetable or is infested with insects; (v) contains any poisonous ingredient that is prohibited or contains excessive preservatives and finally (vi) quality nor purity of the article conform to the legal standards prescribed by the Food Safety and Standards Authority of India (FSSAI). Despite the efforts of Government organizations (safety agencies) to prevent adulteration of food, fraudsters are resorting to newer ways to mimic an

Table I: (Kandpal et al., 2012)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Buffalo Milk (%)</th>
<th>Cow Milk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>84.2</td>
<td>86.6</td>
</tr>
<tr>
<td>Fat</td>
<td>6.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Protein</td>
<td>3.9</td>
<td>3.4</td>
</tr>
<tr>
<td>Lactose</td>
<td>5.2</td>
<td>4.9</td>
</tr>
</tbody>
</table>
original product that can be sold at a cheaper price and at the time the adulterant can go un detected.

**Objective of Adulteration**

Adulteration of milk may be either intentional (e.g., addition of extraneous water, nondairy proteins, melamine, urea, animal fat, reconstituted milk, synthetic milk) or unintentionally by natural means (e.g., natural entry of antibiotics from cattle treated for mastitis, or dust particles or other extraneous objects that might have entered into the milk during processing and lack of proper hygienic conditions.

**Adulteration of milk**

Overpopulation, rapid urbanization and scattered colonization are some of the factors that may be responsible for the increase in demand for milk production (Awan A et al., 2014). To meet the linkage between demand and supply of milk, dealers are often found to involve in milk adulteration (Mustafa MI, et al., 1991). Here are a few examples of adulterants that can be added to milk in order to maintain its freshness and market value. These adulterants can cause great harm to the consumer leaving them clueless of what direct effect these adulterants have on them.

**Nature of Adulteration**

<table>
<thead>
<tr>
<th>Table II: Adulteration in Milk and its Harmful Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Adulterant</strong></td>
</tr>
<tr>
<td>Cellulose</td>
</tr>
<tr>
<td>Maltodextrin / Maltose</td>
</tr>
<tr>
<td>Proteins</td>
</tr>
<tr>
<td>Ammonium sulphate</td>
</tr>
<tr>
<td>Boric acid</td>
</tr>
<tr>
<td>Benzoic Acid and Sodium Benzoate</td>
</tr>
<tr>
<td>Soap/ Detergents</td>
</tr>
</tbody>
</table>
characteristic white color of milk. (Centre for Science and Environment, 2006).

Vegetable oil
Milk fat is the natural source of variable variety of fatty acids diversified in nature. It is separated to make the cream and sold at high prices. People separate the cream from the milk and add vegetable fat into the milk and then sell it after homogenization.

Vegetable fat is unsaturated and it gets oxidized and becomes rancid when exposed to air so become hepatoxic and may cause liver cirrhosis. http://www.pakdairyinfo.com/MAAdulteration.htm

Pond water

Materials and Methods
A standard milk adulteration kit manufactured by HIMEDIA laboratories, Mumbai, India was used. The tests for adulteration were carried out on milk samples supplied in the twin cities of Secunderabad and Hyderabad, Telangana. Samples were collected in clean, dry and sterilized glass bottles. The milk samples were tested for the following adulterants – cellulose, maltodextrin / maltose, proteins, ammonium sulphate, boric acid, benzoic acid, soap, vegetable oil and pond water (Nitrate-Nitrogen).

Results and Discussion
A total of 30 milk samples were tested in duplicates. All tests were carried out at room temperature (29°C). For convenience, the adulterants are categorized into III groups. Adulterants in group I are, cellulose, maltodextrin/maltose and proteins; group II includes, ammonium sulphate, boric acid and benzoic acid; while group III is classified as other compounds where soap, vegetable oil and pond water (Nitrate-Nitrogen) are included.

Determination of the Extent of Different Adulteration in Milk Samples
The percent of different adulterant varied significantly for each of the adulterant tested. The results of group I adulterants are shown in Table. III and figure 1. As evident from the table I and figure 1 all the samples tested negative for cellulose (Figure 2). In comparison, the extent of adulteration of milk sample with maltodextrin / maltose (Figure 3) and proteins were 30% and 40% respectively. Presence of maltodextrine indicates that it might have been used either to add flavor to the milk or reduce the cost of the products. Generally in watered milk, milk powder and other dairy products are often adulterated by low priced non-milk proteins such as soy, pea and soluble wheat proteins (SWP).

Table III: Adulteration of Milk Samples (Group I adulterants)

<table>
<thead>
<tr>
<th></th>
<th>Cellulose</th>
<th>Maltodextrin / Maltose</th>
<th>Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>%</td>
<td>0</td>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>
Figure 1: Adulteration of Milk Samples (Group I adulterants)

Extent of group II adulterants is summarized in Table IV and depicted in Figure 4. In these milk samples the extent of adulteration with ammonium sulfate and boric acid were 37% (Figure 5) and 33% (Figure 6) respectively. In contrast, all the samples tested negative for benzoic acid. Ammonium sulfate is added to milk to raise the density of watered milk. Boric acid and benzoic acid are used as preservatives which increase the shelf life of fresh milk. All these samples tested negative for benzoic acid (Figure 4).

Table IV: Adulteration of Milk Samples (Group II adulterants)

<table>
<thead>
<tr>
<th>Adulterant</th>
<th>Ammonium sulphate</th>
<th>Boric acid</th>
<th>Benzoic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>%</td>
<td>37</td>
<td>63</td>
<td>33</td>
</tr>
</tbody>
</table>
Figure 4: Adulteration of Milk Samples (Group II adulterants)

Results of group III adulterants are presented in table V and figure 7. In this group, 43% of milk samples were positive for vegetable oil. Similarly, 50% of milk samples were positive for pond water (Nitrate-Nitrogen). However, none of the samples tested positive for soap (Figure 8).

Table V: Adulteration of Milk Samples (Group III adulterants)

<table>
<thead>
<tr>
<th>Milk sample</th>
<th>Soap</th>
<th>Vegetable oil</th>
<th>Pond water (Nitrate-Nitrogen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>%</td>
<td>0</td>
<td>100</td>
<td>43</td>
</tr>
</tbody>
</table>

Figure 7: Adulteration of Milk Samples (Group III adulterants)
Review of Literature

Extent of different adulterant present in milk samples

   Among the extraneous substances added into milk and milk products; vegetable oil accounted for 80.8%.

   Ammonium sulphate was present in 61.29%, while skim milk powder in 45.16% of the fresh milk samples.
   Benzoic acid was present in 17.65% and 9.68% of pasteurized milk and fresh milk, respectively.
   Vanaspati was found 83.87% of the fresh milk samples studied.

   Ammonium sulphate was found to an extent of 96.66, in the milk samples studied. In contrast, none of the samples were positive for benzoic acid, detergent and vanaspati.
   The extent of adulteration varied significantly with highest for ammonium sulphate (96%).
   Nitrates (pond water) (0%); Boric acid (0%) and Cellulose (0%)

   Maltose was present in all the collected samples (open as well as branded).

   Cellulose 0%; Maltose 33.3%; Ammonium sulphate 0%; Proteins 100;
   Boric acid 0% and Nitrates (pond water) 53.3%.

   Boric acid 0%.

   Boric acid was not found in any sample.

   None of the milk samples were adulterated with, pulverized soap, ammonium sulphate and nitrates.

It is apparent from the findings in literature that the adulteration of milk is not confined to a particular region within a state, among different states in a country and among different countries in the World. Thus adulteration is a global issue and it is not confined to a particular region, state or country. In addition, the extent of these adulterants varied among the different milk samples.

Conclusion

It is evident from the analyses that a large number of milk samples did not conform to the legal standards prescribed by the Food Safety and Standards Authority of India (FSSAI). Among the different milk samples tested, none of the samples were positive for cellulose (0%), Benzoic acid (0%) and Soap (0%). However, majority of these milk samples tested positive for maltodextrin / maltose (30%), proteins (40%), ammonium sulphate (37%), boric acid (33%) vegetable oil (43%) and pond water (nitrate-nitrogen) (50 %) respectively.
Conflict of interest statement: Author declares that there is no conflict of interest.

Acknowledgment
Authors are thankful to Management and Principal Prof. Y. Ashok, Bhavan's Vivekananda College for providing necessary facilities and constant encouragement.

References


