2017

www.jmscr.igmpublication.org Impact Factor 5.84 Index Copernicus Value: 71.58 ISSN (e)-2347-176x ISSN (p) 2455-0450 crossref DOI: _https://dx.doi.org/10.18535/jmscr/v5i10.204

Jon Publication

Journal Of Medical Science And Clinical Research An Official Publication Of IGM Publication

Impact of Neoadjuvant Chemotherapy on Wound Healing in Modified Radical Mastectomy

Authors

Dr Kaushik.R¹, Dr Arulappan², Dr Karthik Balaji³, Dr Sivaraja⁴, Dr Kishan Rao⁵

Abstract

Introduction: Breast cancer is the second most common cancer among females in India. Neoadjuvant chemotherapy is the standard of care for patients with LABC but its effect on post operative wound healing is debatable.

Aim: In this study we aimed to analyze the wound problems in patients undergoing modified radical mastectomy following neoadjuvant chemotherapy in comparison with patients undergoing primary modified radical mastectomy in terms of wound infection, seroma, flap necrosis, wound dehiscence, and delay in initiation /restarting chemotherapy post surgery.

Materials and Methods: We prospectively analyzed 60 patients undergoing modified radical mastectomy following neoadjuvant chemotherapy in comparison with patients undergoing primary modified radical mastectomy for carcinoma breast with 30 in each arm from june 2014 to September 2016. All patients in the neoadjuvant chemotherapy arm received 4 cycles of Inj. Adriamycin 60mg/m², Inj.Cyclophosphamide 600mg/m². Variables analysed include wound infection, seroma, flap necrosis, wound dehiscence, and delay in initiation /restarting chemotherapy post surgery. Sub analyses of the other tumor and patient factors which impact wound healing was done.

Results: In our study none of the variables analysed were statistically significant. The sub analysis of number of nodes removed and seroma formation, patient factors like BMI and diabetes showed statistical significance.

Conclusion: With the limitation of a small sample size the study concluded that the rate of wound complications in modified radical mastectomy following neoadjuvant chemotherapy is not significantly different from that of primary modified radical mastectomy.

Keywords: Locally advanced, neoadjuvant, chemotherapy, chemoradiation. retrospective.

Introduction

Breast cancer is the second most common cancer among females in India. It is a devastating illness both physically and mentally for tens of thousands of women around the world. The morbidity and mortality of breast cancer make it a leading cause of death in women. It accounts for 33% of all female cancers and is responsible for 20% of cancer related death in women.^[2,3] Neoadjuvant chemotherapy is said to have a number of theoretical and practical advantages in treatment of locally advance breast cancer including ^[7,8,9,10]

- Early treatment of micro metastasis
- Limiting the rapid growth of metastatic foci after removal of primary tumor

- Decreased emergence of chemo resistant clones
- Extension of breast conservation surgery to more patients with larger tumors.

Neoadjuvant chemotherapy is the standard of care for patients with LABC but its effect on post operative wound healing is debatable. Our study analysed the wound problems in patients undergoing modified radical mastectomy following neoadjuvant chemotherapy in comparison with patients undergoing primary modified radical mastectomy in terms of

- wound infection,
- seroma,
- flap necrosis,
- wound dehiscence, and
- delay in initiation /restarting chemotherapy post surgery

Materials and Methods

We prospectively analyzed 60 patients undergoing modified radical patients undergoing primary modified radical mastectomy for carcinoma breast with 30 in each arm from june 2014 to September 2016.

Inclusion criteria

- Patients undergoing modified radical mastectomy with or without neoadjuvant chemotherapy
- All patients above the age of 18 years

Exclusion criteria

Patients with

- Chronic kidney disease
- Altered liver functions
- On steroid therapy
- On radiotherapy
- Collagen disorders
- Skin diseases involving the chest wall

All patients in the neoadjuvant chemotherapy arm received 4 cycles of

- Inj.Adriamycin 60mg/m²
- Inj.Cyclophosphamide 600mg/m².with an interval of 21 days between each cycle,

prior to surgery, according to NSABP 27 PROTOCOL

Variables analysed include

- wound infection,
- seroma,
- flap necrosis,
- wound dehiscence, and
- delay in initiation /restarting chemotherapy post surgery

Sub analyses of the other tumor and patient factors which impact wound healing was done.

Statistics Analysis

The association between neoadjuvant chemotherapy arm and primary MRM arm for the variables under study were determined using chi square tests

Results

Age Distribution

In this study mean age of patients in the neoadjuvant arm is 52.03 years

In this study mean age of patients in the primary MRM arm is 52.13 years [table 1]

Wound site infection

In this study wound infection was seen in 10% of the patients who underwent neo adjuvant chemotherapy and in 6.7% of the patients who underwent primary MRM [table 2]

Seroma

IN this study the seroma formation rates in the neoadjuvant chemotherapy arm were 16.7% and that of the primary MRM were 30.0% [table 3]

Flap necrosis

In this study the flap necrosis rates in the neoadjuvant chemotherapy arm were 13.3% and that of the primary MRM were 6.7% [table 4]

Wound dehiscence

In this study the wound dehiscence rates in the neoadjuvant chemotherapy arm were 13.3% and that of the primary MRM were 3.3% [table 5]

Delay in initiation /restarting chemotherapy

In this study it was observed that 33% of patients in the neoadjuvant chemotherapy arm had delay in initiation /restarting chemotherapy

2017

In the primary MRM 23.3% of patients had delay in initiation /restarting chemotherapy [table 6]

Number of nodes removed vs. seroma

the number of nodes removed and seroma formation showed statistical significance with a p value of 0.000 [table 7]

Node positivity vs. seroma formation in axilla

The incidence of seroma axilla is greater in the positive group. However the p value 0.709 was not statistically significant [table 8]

Volume of specimen vs. wound infection

There was no statistical significance in the incidence of wound infections and the breast volume. [table 9]

Volume of specimen vs. seroma

Analysis showed a statistical significance between the incidence of seroma and breast volume (p value-0.002) [table 10]

Volume of breast vs. flap necrosis

There was no statistical significance between volume of breast and flap necrosis [table 11]

Volume of breast vs. wound dehiscence

None of the patients who had breast volume >500mg had wound dehiscence. The p value was 0.494 which is not statistically significant [table 12]

T staging vs. wound complications

There was no statistical significance found [table 13]

Wound complication rates-BMI

There was a significant association between BMI of the patient and the incidence of wound complication p value 0.000 [table 14]

Wound complication rates in diabetes

There was a significant association in the incidence of wound complication in diabetic patient p value 0.000 [table 15]

Wound complication rates in hypertension

There was no statistical significance found [table 16]

Table 1 Group statistics

Group	N	MEAN	Std deviation	Std Error Mean
Age neoadjuvant chemotherapy	30	52.03	8.381	1.530
primary MRM	30	52.13	12.939	2.362

Table 2

				Gro	oup	Total
				Neoadjuvant chemotherapy	Primary MRM	
Wound infection	site	Present	Count % within group	3 10.0%	2 6.7%	5 8.3%
		absent	Count % within group	27 90.0%	28 93.3%	55 91.7%
	Total		Count % within group	30 100.0%	30 100.0%	60 100.0%

Table 3

			Gro	oup	Total
			Neoadjuvant chemotherapy	Primary MRM	
seroma	Present	Count % within group	5 16.7%	9 30.0%	14 23.3%
	absent	Count % within group	25 83.3%	21 70.0%	46 76.7%
Total		Count % within group	30 100.0%	30 100.0%	60 100.0%

2017

Table 4

			Gro	oup	Total
			Neoadjuvant chemotherapy	Primary MRM	
Flap necrosis	Present	Count	4	2	6
		% within group	13.3%	6.7%	10.0%
	absent	Count	26	28	54
		% within group	86.7%	93.3%	90.0%
		Count	30	30	60
		% within group	100.0%	100.0%	100.0%

Table 5

			Gı	Total	
			Neoadjuvant chemotherapy	Primary MRM	
Wound dehiscence	Present	Count % within group	4 13.3%	1 3.3%	5 8.3%
	absent	Count % within group	26 86.7%	29 96.7%	55 91.7%
Total		Count % within group	30 100.0%	30 100.0%	60 100.0%

Table 6

			Grou	ıp	Total
			Neoadjuvant chemotherapy	Primary MRM	
Time taken to restart /initiate	<=30days	Count % within group	20 66.7%	23 76.7%	43 71.7%
chemotherapy	>30days	Count % within group	10 33.3%	7 23.3%	17 28.3%
Total		Count % within group	30 100.0%	30 100.0%	60 100.0%

Table 7

			se	roma	Total
			present	absent	
Total number	<=15	Count	4	40	44
of nodes		% within total number	9.1%	90.9%	100.0%
removed		of nodes removed			
	>15	Count	10	6	16
		% within total number	62.5%	37.5%	100.0%
		of nodes removed			
Total		Count	14	46	60
		% within total number	23.3%	76.7%	100.0%
		of nodes removed			

Table 8

				seroma axilla		
			present	absent		
Nodal	positive	Count	9	27	36	
status	_	% within Nodal status	25.0%	75.0%	100.0%	
	negative	Count	5	19	24	
		% within Nodal status	20.8%	79.2%	100.0%	
To	otal	Count	14	46	60	
		% within Nodal status	23.3%	76.7%	100.0%	
		removed				

2017

Table	9
-------	---

					volum		Total
					specimens	(grams)	
			<=500	501-1000	1001-1500	>1500	
Wound site	Present	Count	0	2	2	1	5
infection		% within volume of	.0%	6.7%	13.3%	20.0%	8.3%
		specimens(grams)					
	Absent	Count	10	28	13	4	55
		% within volume of	100.0%	93.3%	86.7%	80.0%	91.7%
		specimens(grams)					
Total		Count	10	30	15	5	60
		% within volume of	100.0%	100.0%	100.0%	100.0%	100.0%
		specimens(grams)					

Table 10

				ser	oma	Total
			Γ	present	absent	
Volume	of	<=500	Count	1	9	10
specimen			% within volume of	10.0%	90.0%	100.0%
(grams)			specimens(grams)			
		501-1000	Count	3	27	30
			% volume of	10.0%	90.0%	100%
			specimens(grams)			
		1001-1500	Count	6	9	15
			% within volume of	40.0%	60.0%	100.0%
			specimens(grams)			
		>1500	Count	4	1	5
			% volume of	80.0%	20.0%	100.0%
			specimens(grams)			
	То	tal	Count	14	46	60
			% within volume of	23.3%	76.7%	100.0%
			specimens(grams)			

Table 11

				volum	e of	Total	
					specimen	s(gms)	
			<=500	501-1000	1001-1500	>1500	
Flap	Present	Count	1	2	2	1	6
necrosis		% within volume of	10.0%	6.7%	13.3%	20.0%	10.0%
		specimens(grams)					
	Absent	Count	9	28	13	4	54
		% within volume of	90.0%	93.3%	86.7%	80.0%	90.0%
		specimens(grams)					
Tot	al	Count	10	30	15	5	60
		% within volume of	100.0%	100.0%	100.0%	100.0%	100.0%
		specimens(grams)					

Table 12

				volume of specimens(gms)		Total	
			<=500	501-1000	1001-1500	>1500	
Wound	Present	Count	0	2	2	1	5
dehiscence		% within volume of specimens(grams)	.0%	6.7%	13.3%	20.0%	8.3%
	Absent	Count % within volume of specimens(grams)	10 100.0%	28 93.3%	13 86.7%	4 80.0%	55 91.7%
Total		Count % within volume of specimens(grams)	10 100.0%	30 100.0%	15 100.0%	5 100.0%	60 100.0%

2017

Table 13

		Wound complications		Total	
			present	absent	
T staging	pT0	Count	0	1	1
		% within T staging	.0%	100.0%	100.0%
	pT1	Count	4	2	6
		% within T staging	66.7%	33.3%	100%
	pT2	Count	6	23	29
		% within T staging	20.7%	79.3%	100.0%
	pT3	Count	3	12	15
		% within T staging	20.0%	80.0%	100.0%
	pT4	Count	2	7	9
		% within T staging	22.2%	77.8%	100.0%
Total		Count	15	45	60
		% within T staging	25.0%	75.0%	100.0%

Table 14

			Wound complications		Total
			present	absent	
BMI	<19	Count	2	18	20
		% within BMI	10.0%	90.0%	100.0%
	19-25	Count	3	22	25
		% within BMI	12.0%	88.0%	100%
	>25	Count	10	5	15
		% within BMI	66.7%	33.3%	100.0%
Total	•	Count	15	45	60
		% within BMI	25.0%	75.0%	100.0%

Table 15

			Wound complications		Total
			present	absent	
DIABETES	present	Count	10	15	25
	_	% within diabetes	40.0%	60.0%	100.0%
	absent	Count	5	130	35
		% within diabetes	14.3%	85.7%	100.0%
Total		Count	15	45	60
		% within diabetes	25.0%	75.0%	100.0%

Table 16

			Wound complications		Total	
			present	absent	7	
Hypertension	present	Count	10	15	25	
	-	% within Hypertension	40.0%	60.0%	100.0%	
	absent	Count	5	130	35	
		% within Hypertension	14.3%	85.7%	100.0%	
Total		Count	15	45	60	
		% within Hypertension	25.0%	75.0%	100.0%	

Conclusion

Following observations were made There was no statistical significance

- in the incidence of wound infection
- incidence of seroma
- flap necrosis,
- wound dehiscence, and

• delay in initiation /restarting chemotherapy post surgery

The tumor factors associated with incidence of wound complications

• Volume of breast tissue had a significant association with occurrence of seroma (p value 0.002)

2017

- Tumor size had no statistical significance
- Number of nodes removed was directly proportional to incidence of seroma which was statistically significant.(p value-0.000)
- There was no statistical significance between node positivity and incidence of axillary seroma

The patient factors like BMI and diabetes showed statistical significance on the incidence of wound complication

With the limitation of a small sample size the study concluded that the rate of wound complications in modified radical mastectomy following neoadjuvant chemotherapy is not significantly different from that of primary modified radical mastectomy

Bibliography

- 1. Peedell.C.Concise clinical oncology. Elsevier Health Sciences;2005,P 144
- Guinea VF: epidemiology of breast cancer in blind KI, Copeland EM, (iii edition) the breast : Comprehensive management of benign and malignant disease, Philadelphia WB Saunder 1998 P 339
- Jamal A, Murray T Samuels A, Ghafoor A, Ward E, thunM. Cancer statistics, 2003.CA cancer J Clin 2003;53(1); 5-26
- Hortobagyi GN, Singletary SE Strom EA. Treatment of locally advanced and inflammatory breast cancer .Diseases of the breast 2nd edition Filadelfia: lippinocott, Williams and Wilkins.2000; 334-345
- Valgussa P Zametti et al Factors affecting results in combined modality of treatment, clinical exp metastasis 1983-1.191
- Swain SM. Sorace neoadjuvant chemotherapy in combined modality approach in LABC, Cancer Research 1987:447:3889
- 7. Calais G, Berger C, Descamps et al Conservative treatment feasibility with induction chemotherapy, surgery and

radiotherapy for patient with breast cancer larger than 3 cm 1994;74,1785 1788

- De Lena M Varini M, Zucali R, Rovini d, Viganotto G, Valagussa P,Multimodal treatment for locally advanced breast cancer. Result of chemotherapy – radiotherapy versus chemotherapy surgery. Cancer clinical trials 1980 Dec;4(3):229-36
- Singletary SE MC Neese MD Hortobagyi Feasibility of BCS after inductionchemotherapy, LABC cancere 1992, 69-2849-2852
- Schwartz GF Birchansky et al ; induction chemotherapy followed by breast conservation for LABC cancer 1994 73 362-369