JMSCR Vol||04||Issue||03||Page 10666-10671||March

2016

www.jmscr.igmpublication.org Impact Factor 5.244 Index Copernicus Value: 5.88 ISSN (e)-2347-176x ISSN (p) 2455-0450 crossref DOI: _http://dx.doi.org/10.18535/jmscr/v4i3.60

Journal Of Medical Science And Clinical Research An Official Publication Of IGM Publication

Thyroid Dysfunction and Pregnancy Outcome in Indian Women

Authors **Dr Manisha Chauhan¹, Dr Saurabh Tomar²** ¹M.D Genaral Medicine, SR,G.R. Medical College, Gwalior (MP) Email: drsin100@gmail.com ²M.S Obs & Gynae, Ex-Resident, M.L.B. Medical College, Jhanshi (UP) Email: manishaaa0@gmail.com

Abstract

Objective: Development of maternal thyroid disorder during early pregnancy can influence the pregnancy outcome and fetal development. There is lack of published reports regarding relation of thyroid dysfunction with pregnancy outcome. The purpose of this study is to estimate the prevalence of thyroid dysfunction during pregnancy and To study the effect of thyroid dysfunction on pregnancy outcome.

Materials and Methods: The study was a prospective study with a sample size of 400 antenatal patients attending OPD and emergency ward. After taking consent, these patients were randomly selected for the study.

Results: The prevelance of thyroid disorders in our study was 12.5%.with subclinical hypothyroidism (7%), overt hypothyroidism (4%), subclinical hyperthyroidism (1%), overt hyper(0.5%). In our study subclinical hypothyroidism was associated with complications like PE(10.7%), AP(3.57%), PTD(10.7%), Severe Anemia (25%), IUGR (3.75%), LBW(10.75%).Overt hypothyroidism was associated with PE(18.7%), AP (6.25%), PTD (12.5%), Severe Anemia (31.25%), IUGR (12.5%), LBW(18.7%).

Conclusion: Prevelance of thyroid disorders especially subclinical hypothyroidism and overt hypothyroidism was high. Significant adverse effect on maternal and fetal outcome were seen emphasizing the importance of routine antenatal thyroid screening.

Key Words: Pre eclampsia (PE), Abruptio placentae (AP), Pre Term Delivery(PTD), Intra Uterine Growth Retardation (IUGR), Low Birth Weight(LBW), Still Birth(SB), Confidence Interval(CI).

Introduction

Thyroid disorder are among the most common endocrine disorder affecting pregnancy.via its interaction in several pathways, thyroid functions are important to maintain normal reproduction. several changes are observed in maternal thyroid function during pregnancy and failure to adapt to these changes leads to thyroid dysfunction. pregnancy can be viewed as a state in which a combination of events occur to modify the thyroid economy. there is change in the level of thyroxine binding globulin, total thyroid hormone levels and change in levels of TSH during normal pregnancy. Development of maternal thyroid disorder during early pregnancy can influence the pregnancy outcome and fetal development. Thyroid dysfunction can lead to abortion, hyperemesis, premature birth, pregnancy induced hypertension, severe anemia, low birth weight infants, IUGR, abruptio placenta.

JMSCR Vol||04||Issue||03||Page 10666-10671||March

Materials and Methods

This study is a prospective study done in MLB medical college, Jhansi from January2013to January 2014.Four Hundred antenatal patients attending OPD and emergency ward were taken randomly.

Inclusion Criteria

Singleton pregnancy Gestation age 8-23 wks Primi/Multi gravid

Exclusion Criteria

Multiple gestation

Known case of chronic disorder- diabetes or hypertension

Previous bad obstetric history with known cases.

Refusal of Consent

After taking consent, these patients were randomly selected for the study. Detailed history and general examination was done. patient were sent for TSH screening .if TSH comes deranged, free T3 and free T4 level were done. depending upon the FT3 and FT4 level ,patient were grouped as subclinical/overt hypothyroidism or subclinical/ overt hyperthyroidism.

	TSH NORMAL	TSH INCREASED	TSH DECREASED
FT4 NORMAL	Normal, Euthyroid Sick Syndrome	Subclinical hypothyroidism	Subclinical Hyperthyroidism
FT4 INCREASED	Consider TSH high	Hyperthyroidism (TSH producing pituitary adenoma)	Hyperthyroidism (Grave's, toxic nodule)
FT4 DECREASED	Consider TSH low	Hypothyroidism (primary thyroid failure)	Hypothyroidism (primary pituitary failure), T3 toxicosis

Intrepretation of tests

If they are subclinical / Overt Hypothyroidism, Methimazole started.

At the end of pregnancy, Following outcome were noted:

Maternal Outcome

Preeclampsia Abruptio placenta Preterm delivery Severe anemia

Fetal Outcome

Low birth weight IUGR Still born *American Thyroi*

American Thyroid society in 2007 Recommends cut off value for TSH as

- ➢ First trimester < 2.5mIU/ml</p>
- \blacktriangleright Second and third trimester < 3.0mIU/ml
- ► Lower limit <0.04

Trimester specific values for thyroid function tests

SERUM	UNITS	ST 1 trimester	2 nd	3 rd
TSH	mU/L	0.03-2.3	0.03-3.7	0.13-3.4
FT4	Ng/dl	0.86-1.77	0.63-1.29	0.66-1.12
	pmol/L	11.1-22.9	8.1-16.7	8.5-14.4
FT3	pmol/L	3-5.7	2.8-4.2	2.4-4.1

Aims and Objectives

- 1. To estimate the prevalence of thyroid dysfunction during pregnancy
- 2. To study the effect of thyroid dysfunction on pregnancy outcome.

Results

 Table -1
 Prevalence of Thyroid dysfunction

No. of patients screened	No.	with	thyroid	Prevalence(%)	95(%CI)
400	50	cton		12.5%	10.5-14.9

The prevelance of thyroid disorders in our study was 12.5%

Table-2 Prevalence of Thyroid disorders among 400 women screened

Туре	of	thyroid	No. of cases	Percentage
disorder				
S.hypo			28	7.0
O .hypo			16	4.0
S.hyper			4	1.0
O.hyper			2	0.5

Prevelance of Thyroid disorders among four hundred women screened were Subclinical hypothyroidism(7%),Overt hypothyroidism(4%),Subclinical hyperthyroidism(1%),Overt hyper(0.5%).

 Table -3 Maternal complications among 28 cases of Subclinical hypothyroidism

Complication	No. of cases	Percentage
PE	3	10.7
AP	1	3.57
PTD	3	10.7
SEVERE ANEMIA	7	25.0

In our study subclinical hypothyroidism was associated with complications like PE(10.7%), AP(3.57%), PTD(10.7%), Severe Anemia (25%).

Table 4 Fetal complications among 28 cases of Subclinical Hypothyroidism

No. of cases	Percentage
1	3.57
3	10.7
1	3.57
	1 3 1

Fetal complications among 28 cases of Subclinical Hypothroidism IUGR(3.75%),LBW(10.75%).

 Table-5 Maternal complication among 16 cases of overt Hypothyroidism

complication	No of cases	percentage
PE	3	18.75
AP	1	6.25
PTD	2	12.5
S.ANEMIA	5	31.25

Maternal complication among 16 cases of overt Hypothyroidism. Overt hypothyroidism was associated with PE (18.7%), AP (6.25%), PTD(12.5%), Severe Anemia(31.25%).

Table -6 Fetal complications among 16 cases of Overt Hypothyroidism

complication	No of cases	percentage
IUGR	2	12.5
LBW	3	18.75
SB	1	6.25

Fetal complications among 16 cases of Overt Hypothyroidism. IUGR(12.5%),LBW(18.7%).

Table-7 Maternal complications among 6 cases of Hyperthyroidism

1 0	91 9	
Complication	No of cases	percentage
PE	1	16.6
PTD	1	16.6
AP	-	-

Maternal complications among 6 cases of Hyperthyroidism were PE(16.6%), PTD(16.6%).

Table -8 Fetal complication among 6 cases of Hyperthyroidism

Complication	No.of cases	Percentage
IUGR	1	16.6
LBW	1	16.6

Fetal complications among 6 cases of Hyperthyroidism were IUGR(16.6%), LBW(16.6%).

Table -9 Significance of Maternal Complications among Hypothyroidism

Complication s	Cases(%)	P value	Significance
Severe Anemia	56.25	0.001	Significant
PE	29.45	0.028	Significant
PTD	23.2	0.46	Not significant
AP	9.82	0.24	Not significant

Significant Maternal Complications among Hypothyroidism were Severe Anemia (Significant), PE (Significant).

Table-10 Significance of Fetal Complications among Hypothyroidism

Complication	Cases(%)	P value	significance
LBW	29.45	0.136	Not significant
IUGR	16.07	0.001	significant
SB	9.82	0.23	Not significant

Significant Fetal Complications among Hypothyroidism were IUGR (Significant), LBW (Not Significant), SB (Not Significant).

Discussion

The prevalence of thyroid disorder in our study was 12.5% with a CI of 10.5-14.9%. Our findings are consistent with the reports from the study of Sahu MT et al ,who studied 633 women .in their study, Prevalence was 12.7%. Subclinical

hypothyroidism prevalence is also comparable to Sahu MT et al, who report it to be 6.47%.The prevalence of overt hypothyroidism in our study was 4%, which is partly consistent with Sahu MT et al, in which the prevalence is 4.56%.

Incidence of complications in subclinical hypothyroidism

Study	PE	AP	PTD	IUGR	LBW	SB
Our study	10.7	3.57	10.7	3.57	10.7	3.57
Leung	15	-	9	-	-	-
Sahu MT	9.8	-	10.3	2.4	-	2.5

Our results are comparable to other studies, in term of incidence of complication of overt hypothyroidism. Incidence of complication in Overt Hypothyroidism

study	PE	AP	PTD	IUGR	LBW	SB
Our study	18.75	6.25	12.5	12.5	18.75	6.25
Leung	22.0	-	-	-	22.0	4.0
Sahu MT	20.7	-	4.7	13.8	-	2.9

Conclusion

Our study shows high prevalence of thyroid dysfunction, especially subclinical and overt hypothyroidism among Indian pregnant women, and it is associated with adverse pregnancy outcome. Based on the results of the present study, we therefore suggest for a decrease threshold for screening and detection of thyroid dysfunction among Indian pregnant women attending antenatal clinics.

Funding: Nil

Conflict of Intrest: None

Ethical approval: The study was approved by the institutional ethics committee.

References

- Zadeh-Vakili A, Ramezani Tehrani F, Hashemi S, Amouzegar A, Azizi F. Relationship between Sex Hormone Binding Globulin, Thyroid Stimulating Hormone, Prolactin and Serum Androgens with Metabolic Syndrome Parameters in Iranian Women of Reproductive Age. Diabetes Metabolism . 2012:S:2. Available at: http://dx.doi.org/10.4172/2155-6156.S2-008
- Ramezani Tehrani F, Aghaee M, Asefzadeh S. The comparison of thyroid function tests in cord blood following cesarean section or vaginal delivery. Int J Endocrinol Metab. 2003;1:22–26.
- 3. The American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartum. Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease during Pregnancy and Postpartum. Thyroid. 2011;21:1081–1125.
- 4. Yamamoto T, Amino N, Tanizawa O, Doi K, Ichihara K, Azukizawa M, et al. Longitudinal study of serum thyroid hormones, chorionic gonadotrophin and thyrotrophin during and after normal

pregnancy. Clin Endocrinol (Oxf) 1979; 10:459–468.

- 5. Glinoer D, de Nayer P, Bourdoux P, Lemone M, Robyn C, van Steirteghem A, et al. Regulation of maternal thyroid function during pregnancy. J Clin Endocrinol Metab. 1990;71:276–287.
- El Baba KA, Azar ST. Thyroid dysfunction in pregnancy. Int J Gen Med. 2012;5:227–230.
- Azizi F, Delshad H. Thyroid Derangements in Pregnancy. IJEM. 2014; 15:491–508.
- Cignini p, Cafà EV, Giorlandino C, Capriglione S, Spata A, Dugo N. Thyroid physiology and common diseases in pregnancy: review of literature. J Prenat Med. 2012;6:64–71.
- Casey B, Leveno K. Thyroid disease in pregnancy. Obstet Gynecol. 2006;108:1283–1292.
- Cunningham F, Leveno KJ, Bloom SL, Hauth JC, Rouse Dj, Spong CY. Williams Obstetrics. 23rd Ed.. McGrraw-Hill Companies; 2010.
- 11. Delshad H, Azizi F. Thyroid and pregnancy. J Med Council Iran. 2008;26:392–408.
- 12. Banerjee S. Thyroid Disorders in Pregnancy. JAPI. 2011;59:32–34.
- 13. Glinoer D, Spencer CA. Serum TSH determinations in pregnancy: how, when and why? Nat Rev Endocrinol . 2010;6: 526–529.
- 14. Lazarus JH. Thyroid function in pregnancy. Br Med Bul. 2011;97:137–148.
- 15. Ramezani Tehrani F, Tohidi M, Rostami Dovom M, Azizi F. A Population Based Study on the Association of Thyroid Status with Components of the Metabolic Syndrome. Diabete Metab. 2011;2:1–5.
- 16. Gaberšček S, Zaletel K. Thyroid physiology and autoimmunity in

JMSCR Vol||04||Issue||03||Page 10666-10671||March

pregnancy and after delivery. Expert Rev Clin Immunol. 2011;7:697–706.

- 17. Polak M, Le Gac I, Vuillard E, Guibourdenche J, Leger J, Toubert ME, et al. Fetal and neonatal thyroid function in relation to maternal Graves' disease. Best Pract Res Clin Endocrinol Metab. 2004;18:289–302.
- 18. Peleg D, Cada S, Peleg A, Ben-Ami M. The relationship between maternal serum Thyroid-stimulating immunoglobulin and fetal and neonatal thyrotoxicosis. Obstet Gynecol. 2002;99:1040–1043.
- Davis LE, Lucas MJ, Hankins GD, Roark ML, Cunningham FG. Thyrotoxicosis complicating pregnancy. Am J Obstet Gynecol. 1989;160:63–70.
- Casey BM, Dashe JS, Wells CE, McIntire DD, Leveno KJ, Cunningham FG. Subclinical hyperthyroidism and pregnancy outcomes. Obstet Gynecol. 2006;107:337–341.
- Davis LE, Lucas MJ, Hankins GD, Roark ML, Cunningham FG. Thyrotoxicosis complicating pregnancy. Am J Obstet Gynecol. 1989;160:63–70.