Rare Complication of Ventriculoperitoneal Shunt: Anal Extrusion

Authors

Dr Pravin Bhingare1, Dr Ninad Sawant2

1Associate Professor, 2Resident
Department of Surgery, Government Medical College, Nagpur India
Corresponding Author

Dr Ninad Sawant
Resident, Department of Surgery, Government Medical College, Nagpur India

Abstract

Ventriculoperitoneal Shunt (VP shunt) surgery is one of the common neurosurgical procedure employed in management of hydrocephalus. Most common complications of VP shunt surgery include shunt malfunction secondary to partial or complete blockage, Shunt infections, slit ventricle syndrome due to over drainage of cerebrospinal fluid and multiloculated hydrocephalus. On distal end abdominal complications like peritoneal pseudocysts, lost distal catheters, bowel perforations and hernias may be seen. Anal extrusion of peritoneal end of VP shunt by perforating intestines requiring revision of shunt is a very rare complication of VP shunt surgery. We report here a case of 7 months old male child who underwent VP shunt surgery at the age of 1 month for congenital hydrocephalus. The baby underwent a revision surgery for blockage of VP shunt 5 months after the first surgery. Now the baby presented with extrusion of peritoneal end of VP shunt through anus. There was evidence of CSF draining through the extruded end of VP shunt. A revision surgery on other side was done. After surgery the baby gradually improved and was eventually discharged after 3 weeks.

Keywords- Congenital Hydrocephalus, Ventriculoperitoneal shunt, Anal Extrusion.

Introduction

Hydrocephalus is a one of the most common disorder of cerebral spinal fluid (CSF) physiology resulting in dilatation of the cerebral ventricles. Before closure of sutures (Infancy) this usually causes progressive increase in head circumference whereas in children of more than 2 years of age (after closure of cranial sutures) it presents with signs and symptoms of intracranial hypertension[1]. Hydrocephalus can be divided into 2 subtypes namely Communicating and non communicating hydrocephalus [2]. In cases of communicating hydrocephalus the flow of CSF is not obstructed and the basic pathology is inadequate absorption of CSF in the subarachnoid space. This type of hydrocephalus is commonly seen in tubercular meningitis. Second type of hydrocephalus is non communicating hydrocephalus in which the basic pathology is obstruction to CSF flow from the ventricles to subarachnoid space. Non communicating hydrocephalus can further be divided into congenital and acquired depending upon the etiology of hydrocephalus [3].
The common causes of hydrocephalus in paediatric age group include congenital hydrocephalus, X-linked hydrocephalus, Choroid plexus papilloma, venous sinus occlusion, vein of galen malformation, tubercular meningitis and pyogenic meningitis with sequel [4]. The commonly performed procedure to relieve hydrocephalus is VP shunt surgery [5]. There are various types of valve assemblies used for shunting of cerebrospinal fluid from ventricles to the peritoneal cavity [6]. Though VP shunts are very useful in relieving hydrocephalus they are prone to cause various complications. The common complications seen with VP shunts are shunt malfunction, blockage, shunt infections and meningitis [7]. The abdominal complications seen with VP shunts include infections, CSF fistula, paralytic ileus, perforation, hernia and hydrocele [8]. Rare complications include spontaneous extrusion of the tube through the umbilicus or anus [9]. The early diagnosis and prompt management of these complications can prevent complications like ventriculitis, meningitis and finally sepsis by intestinal flora [10].

Case Report

7 month old male child was brought with complaint of white catheter (VP shunt) extruding from anus since 1 day. There was a past history of hydrocephalus in the patient since birth. For this the baby was operated at the age of 1 month. There was also a history of a revision surgery 1 month back for blocked shunt. Since revision surgery the baby was fine with no active complaints. 1 day back Mother noticed something coming out of anus and for this complaint the baby was brought to us.

On examination the child was vitally stable, Cry, tone and activity was normal. There was no evidence of any focal neurological deficit or any signs suggestive of meningitis. Respiration was regular 36 /min. Pupils were normally reacting and equal in size. Reflexes were also normal. VP shunt was seen extruding from anus [Figure 1]. The length of Vp shunt outside anus was 22 cms. cerebrospinal fluid was seen draining from this extruded end of VP shunt.

Figure 1: Distal end of ventriculoperitoneal shunt seen extruding from anus.

Preoperative investigations showed mild polymorphonuclear leukocytosis, anaemia and hypoproteinemia (total wbc count 14000/mm3, Hb-8.5gm/dl, serum total proteins 4.5g/dl). Blood urea and serum creatinine was within normal limits. C-Reactive protein was normal (CRP= 3). An X-Ray abdomen was done which showed shunt in peritoneal cavity and penetration of peritoneal end through rectum [Figure 2].

Figure 2 : X-Ray Erect Abdomen showing shunt in peritoneal cavity with distal end migrating inferiorly.
On Ultrasound there was no e/o any peritoneal collection. Computerised tomography scan showed hydrocephalus with shunt in third ventricle with scalp defect from where shunt was inserted [Figure 3].

Figure 3: Computed Tomography of Brain showing hydrocephalus with shunt in 3rd ventricle.

Patient was kept nil by mouth and started with Intravenous fluids and broad spectrum injectable antibiotics to prevent meningitis. Patient was posted for surgery. Incision was given over previous scar in left parietal region. VP shunt was removed first by cutting shunt inferior to chamber then extruded end is pulled through anus. Patient was observed for 24 hours for any drowsiness or altered sensorium. Baby developed fever on next day. Injectable paracetamol was given to control fever and blood culture was sent. There were 2 episodes of generalised tonic clonic convulsions following which the baby developed drowsiness. Patient was given phenobarbitone in the loading dose of 20mg/kg but the convulsions continued hence another dose of phenobarbitone 10mg/kg was given to which patient responded. Later phenobarbitone was continued in maintenance dose of 10mg/kg/day in 2 decided doses. A revision shunt surgery was done on opposite side. Patient tolerated surgery well. In the post-operative period the baby was hemodynamically stable. The condition of baby improved gradually and baby was given nasogastric feeding initially followed by spoon feeding and then breast feeding was started. Later patient was discharged after 3 weeks of hospital stay with an advice for regular follow up and monitoring of head circumference.

Discussion

Hydrocephalus is common in paediatric age group. Common causes of hydrocephalus in children include congenital hydrocephalus, post tubercular or pyogenic meningitis and idiopathic [11]. VP shunt is one of the universally accepted procedure in management of hydrocephalus. The VP shunt though very effective in decreasing intracranial tension by drainage of CSF is fraught with the danger of complications. The complications my involve any part of VP shunt from cranial to caudal end and its course [12]. Common complications include kinking, complete or partial blockage, shunt infection, meningitis, ventriculitis and sepsis. The abdominal complications include perforation, migration of tube into pleural cavity, liver, heart, and scrotum, anus or abdominal wall [13].

The unusual complication of anal extrusion of VP shunt was first reported by Wilson and Bertrand in 1966 [14]. Later many vases of bowel perforation and few cases of extrusion through anus were reported [15]. Exact pathogenesis of VP shunt related organ perforation is unclear. Various mechanisms have been suggested including foreign body reaction, poor nutritional status with weakening of intestinal wall stiff end of shunt tube causing pressure necrosis and immune mediated reactions against the material of VP shunt tube. [16]. Because of weak bowel musculature children are more susceptible to intestinal perforation [17]. Most cases of bowel perforations caused by peritoneal catheter occur well after the surgery suggesting that they resulted from chronic inflammatory process rather than traumatic event. In this case poor nutritional status along with infection would be precipitating cause. In majority of cases bowel perforations are asymptomatic [18]. Few cases present with complications like intestinal obstruction, adhesions, peritonitis, tube knotting which warrant emergency exploratory laparotomy [19]. After removal of migrated VP shunt causing bowel perforation, spillage of intestinal contents into peritoneal cavity does not occur due to formation of mature tract around catheter which attached to bowel surface so there is no requirement...
of surgical procedures like laparotomy, laparoscopy or endoscopy, perforation of bowel can be managed conservatively. In this case also there was no requirement of any surgical procedure.

Conclusions
Though uncommon intestinal perforation anal extrusion of VP shunt should always be considered in patients having VP shunt and clinical features suggestive of perforation. Immediate imaging and prompt management will decrease the morbidity and mortality associated with these unusual complications.

Conflict of Interest: None

References
10. Li XY, Wang ZC, Li YP, Ma ZY, Yang J, Cao EC. [Study on treatment strategy for ventriculitis associated with ventriculoperitoneal shunt for hydrocephalus].2005 Sep;17(9):558-60.
shunt malfunctions in children. Biomateri-
17. Hai A, Rab AZ, Ghani I, Huda MF, Quadir
AQ. Perforation into gut by
ventriculoperitoneal shunts: A report of
two cases and review of the literature.
Journal of Indian Association of Pediatric
18. Rinker EK, Osborn DA, Williams TR,
Spizarny DL. Asymptomatic Bowel Perfo-
ration by Abandoned Ventriculoperitoneal
Shunt. Journal of Radiology Case Reports.
Spontaneous bowel perforation complicat-
ing ventriculoperitoneal shunt: a case re-
20. Bourm K, Pfeifer C, Zarchan A. Small
bowel perforation: a rare complication
ventriculoperitoneal shunt placement. J
Radiol Case Rep. 2016 Jun 30;10(6):30-
35.