Sputum Smear Conversion Time of HIV Infected and Uninfected Patients with Rifampicin and Isoniazid Mycobacterium tuberculosis gene Mutations in Western Kenya

Authors
Shiluli, Clement1,2, Ouma, Collins2,3, Vulule, John1, Khayumbi, Jeremiah1, Murithi, Wilfred1, Musau, Susan1, Okumu, Albert1

1Kenya Medical Research Institute (KEMRI)/Center for Global Health Research (CGHR), Kisumu, Kenya, 2School of Public Health and Community Development, Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya

*Correspondence School of Public Health and Community Development, Department of Biomedical Sciences and Technology, Maseno University, P.O. Private Bag, Maseno
Email: clementshiluli@yahoo.com, Mobile Number+254 723 474 168

Abstract
Background: In 2013, an estimated 9.0 million people developed tuberculosis (TB) and 1.5 million died from the disease, 360 000 of whom were HIV-positive. A major challenge to TB management is the multi-drug resistant (MDR) TB strains and HIV. There are few studies in western Kenya on the specific mutations underlying resistance to rifampicin (RIF) and isoniazid (INH) and the time to sputum smear conversion, especially in HIV-infected patients.

Methods: We therefore studied sputum smear conversion time in TB and HIV co-infected patients with previously confirmed rpoB, katG and inhA Mycobacterium tuberculosis gene mutations. Drug sensitivity tests and line probe assays had been performed previously on sputum samples from participating patients. Samples with discordant results were further sequenced to confirm rpoB, katG, and inhA gene mutations that have been associated with RIF and INH mutations. Gene mutations were classified into three categories based on specific codons with mutations on the rpoB, katG, and inhA genes as follows, MDR-TB, RIF mono-resistant (RMR) TB and isoniazid mono-resistant (INHMR) TB. Ziehl-Neelsen (ZN) microscopy was done on sputum samples from enrolled patients on two occasions; during first and follow-up visits at respective health facilities. The period of follow-up was less than one year. Smear results were available for 16 patients with confirmed drug resistant TB. The smear conversion rate was determined by dividing the number of patients who had a negative smear during follow-up and the number of smear positive patients on first visit and multiplying by 100. Spearman’s correlation coefficient was used to assess the strength of associations between continuous and ordinal variables.

Results: The smear conversion rate for participating patients was as follows; RMR-TB = 100%, INHMR-TB = 60% and MDR-TB = 67%. All the patients had positive Mycobacterium tuberculosis cultures. There was positive correlation between follow-up days and ZN smear results, (r_s(14) = 0.097, p = 0.721).

Conclusion: Sputum smear conversion time can be used in monitoring drug resistant TB in both HIV-infected and -uninfected patients.

Keywords: Tuberculosis, HIV, MDR-TB, isoniazid mono resistant, rifampicin mono resistant gene sequencing.
Introduction
In 2013, an estimated 9.0 million people developed tuberculosis (TB) and 1.5 million died from the disease, 360,000 of whom were HIV-positive (1). Globally, approximately 480,000 cases of multi-drug resistant TB, defined as TB caused by strains of Mycobacterium tuberculosis (M. tuberculosis) resistant to at least isoniazid and rifampicin, were reported (1). In Kenya, the prevalence of HIV is 5.6% and HIV co-infection rate is 35% (2). A major challenge to TB management is the presence of MDR-TB because patients are treated with expensive second-line drugs and HIV, which is a known risk factor for TB (3,4). Rifampicin and isoniazid are important drugs in first-line anti-TB treatment irrespective of HIV status (3). Drug resistance to at least one or both has been associated with poor response to treatment (4). It is recommended that MDR-TB should be monitored routinely through drug susceptibility tests (DST) (5). However, recent studies have reported more than 90% agreement between DST and smear results in MDR-TB patients being treated for up to a period of 27 months (4,6). Sputum smear microscopy to monitor treatment response measure is therefore practical in resource limited countries and provides rapid results, is inexpensive, easy to perform, does not require complex laboratory equipment (7). Rifampicin resistance occurs as a result of mutations on the rpoB gene that encodes the β subunit of the RNA polymerase (8). Resistance to isoniazid is classified into either high or low level resistance depending on the type of gene mutations (8). Isoniazid is activated by the enzyme catalase peroxidase, encoded by katG and mutations on this gene lead to high-level isoniazid resistance (8). The inhA gene encodes an enoyl acyl carrier protein reductase involved in fatty acid synthesis and isoniazid interferes with this process (8). Mutations on this gene lead to low-level isoniazid resistance (9). There are few studies on the specific mutations underlying resistance to rifampicin and isoniazid and the time to sputum and liquid culture conversion, especially in HIV-infected patients (10). We therefore studied patients with previously confirmed rpoB, katG and inhA M. Tuberculosis gene mutations and sputum smear and liquid culture conversion time in TB and HIV co-infected patients in western Kenya.

Materials and methods
Study site
This study was conducted between 2012 and 2014. This is a reference laboratory for drug resistant M. tuberculosis for health facilities in more than five counties in western Kenya. According to the Ministry of Public Health and Sanitation guidelines, the following regimen, administered for 9 months is recommended; for INH resistance with or without streptomycin (STR) resistance: rifampicin (RIF), pyrazinamide (PZA), ethambutol (EMB) and levofloxacin (LFX); for INH and PZA resistance: RIF, EMB and LFX; for INH and EMB resistance: RIF, PZA and LFX (11). The treatment regimen of rifampicin mono-resistant (RMR) TB and MDR-TB consists of the following; for 6 months; kanamycin (KM), prothionamide (PTO), LFX, cycloserine (CS), and EMB or PZA followed by PTO, LFX, CS and EMB or PZA for 18 months (11).
Laboratory methods
DST, LPA and Gene Sequencing
Drug sensitivity tests using the BACTEC™
MGIT™ 960 SIRE kit (BD Diagnostic systems,
Baltimore, Maryland, USA) and line probe assays
using the MTBDR plus v2.0 kit (Hain Life
science, Nehren, Germany) had been performed
on sputum samples from participating patients.
Discordant samples were further sequenced using
the Big Dye® Terminator v3.1 Cycle Sequencing
Kit to confirm rpoB, katG, and inhA mutations.
During follow-up visits to the health facilities,
approximately 5 ml of sputum sample was
collected from each patient.

ZN Microscopy
Samples were transported to the referral
laboratory for Ziehl-Neelsen (ZN) microscopy
which was done by staining heat-fixed smears on
microscopic slides for 5 minutes with
carbolfuchsin (Sigma-Aldrich Co., St. Louis,
Missouri, USA), decolorizing for 3 minutes,
followed by counterstaining with malachite green
(Sigma-Aldrich Co., St. Louis, Missouri, USA)
for 1 minute. Sputum smear microscopy results
were interpreted according to the International
Union Against Tuberculosis and Lung Diseases
(IUATLD) grading system (12). The quality of
results was ensured by having two independent
microscopists read the slides. Results were entered
into an Excel spreadsheet.

Statistical Analysis
The proportion of smear converted-patients was
calculated by dividing the number of patients who
had a negative smear during follow-up and the
number of smear positive patients with confirmed
drug-resistant TB and multiplying by 100.
Spearman’s correlation coefficient was used to
assess the strength of associations between
continuous and ordinal variables.

Results
Smear microscopy conversion rates of TB
patients with rifampicin and isoniazid
conferring mutations
Ziehl-Neelsen (ZN) microscopy was done on two
occasions; at initial visit for drug-resistant TB
evaluation and during follow-up visits for
monitoring disease progression at respective
health facilities. Follow-up smear results for 16
patients were available as indicated in Table 1. Rifampicin and isoniazid confering gene
mutations were classified into three categories;
rifampicin mono-resistant (RMR), isoniazid
mono-resistant (INHMR) and multi-drug resistant
gene mutations (Table 1). Sputum conversion rate
was calculated as previously explained. There was
positive correlation between the number of days
between laboratory visits and ZN smear results,
($r_s(14) = 0.097, p = 0.721$).

Smear conversion time for HIV positive and
HIV negative patients with drug resistant TB
A total of 6 and 5 HIV positive and HIV negative
patients respectively had smear converted as
shown in Fig 1. The median smear conversion
time was higher 6.5 months in HIV positive
patients and 3 months in HIV negative patients
(Fig 1).
Fig 1: Sputum smear conversion time for HIV positive (A) and HIV negative (B) patients with drug resistant TB.

Table 1. Sputum smear conversion rates for HIV-infected (in bold) and uninfected patients with rifampicin and isoniazid conferring gene mutations at initial and follow-up visits to the health facility

<table>
<thead>
<tr>
<th>Amino acid modifications</th>
<th>Initial ZN smear</th>
<th>Follow-up (Months)</th>
<th>Sputum conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H526Y</td>
<td>1+</td>
<td>NEG, (11)</td>
<td>100</td>
</tr>
<tr>
<td>S531L</td>
<td>3+</td>
<td>NEG, (8)</td>
<td></td>
</tr>
<tr>
<td>S315N</td>
<td>3+</td>
<td>3+, (8)</td>
<td></td>
</tr>
<tr>
<td>S315T1</td>
<td>3+</td>
<td>1+, (8)</td>
<td></td>
</tr>
<tr>
<td>S315T1</td>
<td>3+</td>
<td>NEG, (4)</td>
<td></td>
</tr>
<tr>
<td>S315T1</td>
<td>1+</td>
<td>NEG, (5)</td>
<td></td>
</tr>
<tr>
<td>C-15T(^a)</td>
<td>1+</td>
<td>NEG, (2)</td>
<td></td>
</tr>
<tr>
<td>S531L and S315T1</td>
<td>3+</td>
<td>NEG, (5)</td>
<td></td>
</tr>
<tr>
<td>D516F and S315T1</td>
<td>3+</td>
<td>NEG, (2)</td>
<td></td>
</tr>
<tr>
<td>S531L and S315T1</td>
<td>1+</td>
<td>NEG, (9)</td>
<td></td>
</tr>
<tr>
<td>S531L and C-15T(^a)</td>
<td>1+</td>
<td>NEG, (1)</td>
<td></td>
</tr>
<tr>
<td>S531L and S315T1</td>
<td>2+</td>
<td>1+, (2)</td>
<td>67</td>
</tr>
<tr>
<td>S531L and S315T1</td>
<td>1+</td>
<td>NEG, (3)</td>
<td></td>
</tr>
<tr>
<td>Missing wt and S315T1</td>
<td>1+</td>
<td>NEG, (4)</td>
<td></td>
</tr>
<tr>
<td>D516V and S315T1</td>
<td>2+</td>
<td>1+, (2)</td>
<td></td>
</tr>
<tr>
<td>Missing wt and S315T1</td>
<td>3+</td>
<td>2+, (2)</td>
<td></td>
</tr>
</tbody>
</table>

NEG; Negative, wt; wild type, MDR; Multi drug-resistant, RMR; rifampicin mono resistant; INHMR; Isoniazid mono resistant. HIV co-infected codon mutations are shown in bold.

Amino acid abbreviations: S, Ser; T, Thr; R, Arg; L, Leu; V, Val; H, His; D, Asp; Y, Tyr; F, Phe.

\(^{a}\)Cytosine (C) to Thymidine (T) position -15 nucleotide substitution for the inhA gene regulatory region.
Discussion

Sputum smear microscopy is the primary method for monitoring treatment response in resource-constrained countries (13). In this study, we investigated the sputum smear conversion time in TB and HIV co-infected patients with confirmed mutations on rifampicin (RIF) and isoniazid (INH) conferring genes. Calculation of sputum conversion time is an important measure for determining the progress of treatment (14). Previous studies have shown that the H526Y and the S531L mutations are associated with higher minimum inhibitory concentrations for RIF and therefore poor drug response (3). In our study, these mutations were identified in two HIV co-infected patients who had a 100% smear conversion rate at 11 months and 8 months respectively (Table 1). This finding emphasizes the importance of prolonged RIF TB therapy for improved treatment outcome (15,16). However previous studies have shown that smear microscopy is less sensitive in HIV positive patients with MDR-TB and cure should be confirmed after obtaining at least 5 negative sputum culture results during 12 months of treatment (6).

Patients with INH mono resistance have unfavorable treatment outcome and relapse (9). Therefore it is expected that smear conversion time will be prolongd. In the present study, the sputum conversion rate for patients with INH mono resistant was 60% (Table 1). Our data indicated that 4 out of 5 HIV co-infected patients had the S315T1 mutation that has been associated with high level INH resistance, however, most patients with this mutation had smear converted at the time of follow-up. Patients with the S315N mutation had a 3+ bacterial load even after 8 months of treatment. Therefore, it is anticipated that treatment of INH mono-resistant TB should be prolonged for an improved treatment outcome.

A previous culture study in the USA demonstrated a 9 months conversion time, however, since genotyping of sputum samples was not performed, it was known if this particular finding was as a result of acquired resistance, re-infection, mixed infections or laboratory cross-contamination (6). In addition, the study involved TB patients not exposed to HIV infection (6). Even though we found a short smear conversion time in HIV negative patients, studies have shown that
microscopy particularly in HIV positive patients failed to precisely detect bacilli in culture positive sputum samples suggesting that smear monitoring alone of drug resistant TB should be used with great caution \(^{(10)}\). HIV infection has been associated with poor drug efficacy and this could be the likely reason for the long smear conversion time, however, a previous study documented that HIV positive patients with MDR-TB who were on early Highly Active Antiretroviral Therapy (HAART) had improved treatment outcomes as compared to a control group from the pre-HAART era \(^{(10)}\).

In the present study, we found positive correlation between the number of days of laboratory visits and reduction in bacilli load as determined by ZN microscopy. Studies have recommended that sputum culture conversion at 2 months can be used for monitoring treatment in patients with pulmonary TB.

Our data had several limitations, we were not able to determine the exact time at which the study patients had started treatment for drug-resistant TB and we had few study participants due to the low prevalence of drug-resistant TB in the study population, in addition, we did not have culture results data on follow-up patients. Our findings need to be supported with other similar studies in HIV endemic regions.

Conclusion

Sputum smear conversion time can be used to monitor drug resistant TB in both HIV-infected and -uninfected patients.

Recommendation

We recommend that sputum smear conversion time can be used to monitor drug-resistant TB in both HIV-infected and uninfected patients in poor resource countries, however, this should be done in comparison to reference laboratories that perform culture of *Mycobacterium tuberculosis*.
Competing interests
The authors declare that they have no competing interest.

Author’s Contribution
The authors declare no conflict of interest. CS designed the study, collected and analyzed data and wrote the manuscript, CO and JMV revised the manuscript, JK and WM collected data and revised the manuscript, SM and AO revised the manuscript. All authors proof read the final version of the manuscript before submission.

Funding: This research was funded by a grant from the Association of African Universities (AAU) and the KEMRI/CDC Tuberculosis Research Laboratory

References