Using Muscle Architecture to Predict Maximum Strength and Its Relation to Activity Levels in Cerebral Palsy Patients

Authors
*Prof. Dr. Emam Hassan El Negamy, *Prof. Dr. Hoda Abd El Azim El Talawy, *Dr. Eman Hassan Abd Alsalam, Taher Salah El Din Taha

ABSTRACT

Background: To provide insight into the relationship between muscle architecture, muscle strength and activity level in CP.

Subjects and Methods: This study was conducted on forty subjects divided into two groups of equal number, group A (normally development) and group B (cerebral palsy patients). All participated subjects examined for their rectus femoris and vastus lateralis muscle thickness by sonography, quadriceps muscle isometric peak torque measured by isokinetic dynamometer, activity level for group B only evaluated by pediatric outcome data collection instrument (parent report and self-report). Group A evaluated for one time and group B evaluated two times at starting and after six months of physical therapy program.

Results: showed direct relationship between muscle thickness measured by sonography and both muscle strength and activity level.

Conclusion: muscle thickness measured by sonography can be used to evaluate muscle strength and activity level in cerebral palsy patient.

Key words: Muscle architecture, muscle strength, activity level, cerebral palsy.

Cerebral palsy (CP) is a group of motor disorders of movement and posture, often characterized by impairments such as muscle weakness, spasticity, stiffness, and excessive co-contraction (Bax et al., 2005). Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain. The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, and behaviour, by epilepsy, and by secondary musculoskeletal problems (Rosenbaum et al., 2007).
Singhi (2004) and Edwin et al (2006) reported that cerebral palsy occurs in approximately 3 per 1000 of live births. 75% of cerebral palsy children have spastic cerebral palsy. The goal of management of cerebral palsy is not to cure or to achieve normality but to increase functionality, improve capabilities, and sustain health in terms of locomotion, cognitive development, social interaction, and independence. The best clinical outcomes result from early, intensive management (Taylor, 2005).

In patients with CP, the strength (force-generating capacity) of the knee extensor muscles alone is significantly correlated with the standing, walking, running, and jumping components of the Gross Motor Function Measure and with the total Gross Motor Function Measure score (Goh, 2006).

In children and adolescents with CP, exercise and resistance training are important components of rehabilitation programs for counteracting these impairments at the muscle level, thus improving muscle force output and efficiency (Verschuren et al., 2007).

Muscle architecture is defined as the internal arrangement of muscle fibers within a muscle and has been described as the primary determinant of muscle function (Lieber et al., 2000).

Because the architecture of a muscle determines the force-velocity properties of the muscle, including outcome measures of muscle architecture is of clinical importance. Such measures include physiological and anatomical cross-sectional areas, muscle thickness, and length and angle of fascicles (bundles of muscle fibers). However, researchers are only beginning to understand the differences in muscle architecture in children and adolescents with CP and those with typical development (TD). Furthermore, information in the literature about how muscle architecture predicts muscle function in CP is scarce. Even more scarce are studies reporting on how muscle architecture predicts other impairments or activity levels in CP, which are important for informing clinical practice. Children and adolescents with CP have lower activity levels than their peers with TD (Moreau, 2010).

Children and adolescents with CP have lower activity levels than their peers with TD. Whether primary weakness is the cause of decreased activity levels or whether decreased activity levels result in secondary weakness is unknown. Over time, the interaction of these 2 properties, in conjunction with abnormal movement patterns, may perpetuate a continuous cycle of inactivity and weakness, accompanied by disuse atrophy and alterations in muscle architecture (Damiano., 2006).

The possible role of muscle dysgenesis, or abnormal development of muscle architecture, in weakness, spasticity, and disuse is unknown. It has been shown that weight-bearing muscles, particularly the quadriceps and gastrocnemius muscles, are most affected by disuse and inactivity in humans because of their antigravity function (De Boer, 2007).

The quadriceps muscles are particularly important for transitioning from sitting to standing, ascending and descending stairs, and antigravity control during the stance phase of gait, among other functional activities (Mizner, 2005).

Ohata et al (2006) examined Muscle Thickness (MTH) measured by ultrasonography as Quantitative Muscle Evaluation for Adults with Severe Cerebral Palsy. The results suggested that the muscle thickness of
the quadriceps muscle and longissimus differed significantly depending on the subjects’ motor function during daily activity. The measurement of MTH may be an alternative method of quantitative muscle evaluation for people with severe CP for whom direct measurement of muscle strength is difficult.

SUBJECTS, INSTRUMENTATION AND PROCEDURES

Forty subjects aged eight to twelve years include two groups:

Group A: included twenty child with normal development

And group B: included twenty spastic diplegic cerebral palsy children.

Inclusion criteria for group B with cerebral palsy all, of them were:

1. Ambulant
2. Having mild spasticity
3. Were at Gross Motor Function Classification System (GMFCS) levels I through IV

Exclusion criteria for group B:

1. Have no orthopedic or neurological surgery within 6 months before testing
2. Have no botulium toxin injections to the quadriceps muscle within 3 months before testing.
3. Have no cognitive or other behavioral impairments that interfered with the ability to understand and follow directions.

NB: parental written informed consent was obtained for each participant.

Both groups A and B were evaluated at starting the study. While group B(cerebral palsy) only was evaluated after 6 months of physical therapy treatment for architectures of the quadriceps, their maximum strength and for group B only the activity level.

A. Ultrasound images of the rectus femoris (RF) and vastus lateralis (VL) muscles was recorded in real time with a 6- to 12-MHz linear-array transducer in 2D B-mode. Imaging was performed prior to strength assessment, and the right lower extremity was chosen for measurement.

Participants must rest comfortably in the supine position with the knee joint near the natural resting position of 10 degrees flexion; a towel roll was placed under the knee as needed for positioning or to aid comfort and muscle relaxation. Participants were supine for approximately 10 to 15 minutes prior to imaging. The resting angle of the knee was measured and recorded with a goniometer.

Participants were instructed to relax their muscles during scanning. Images was recorded only when the muscle is fully relaxed, as evidenced in real time.

Images of the rectus femoris RF muscle was taken at 50% of the distance between the anterior superior iliac spine and the superior border of the patella.

Images of the vastus lateralis (VL) muscle was taken at the midpoint between the most prominent portion of the greater trochanter and the lateral femoral epicondyle.

To ensure proper placement of the probe, each midpoint was clearly marked on the skin with a surgical pen.
To eliminate compression of the muscle, a generous amount of gel was applied to the skin, and the examiner will hold the probe suspended on top of the gel with the forearm supported.

Images were taken with the probe oriented in the sagittal plane and perpendicular to the skin, and the muscle thickness was calculated as the distance between the superficial and the deep aponeurosis in the middle of the ultrasound image at a 90-degree angle from the deep aponeurosis with the ultrasound system software. Three images was taken three times per muscle, and the average value from the 3 images for each measurement was used in the analyses.

B. Maximum voluntary knee extensor torque tested isometrically at a knee angle of 60 degrees of flexion with an isokinetic dynamometer (System 3 Pro). The 60-degree position was chosen because it approximates the optimal point on the length-tension curve for generating force. The peak isometric torque of the highest of 3 repetitions was used as the measure of strength, or maximum force-generating capacity.

C. The pediatric Outcomes Data Collection Instrument parent report and self-report administered as measures of activity and participation. The pediatric Outcomes Data Collection Instrument was designed to assess self-reported and parent reported physical function and psychosocial aspects of health status in children with mild to moderate musculoskeletal disability. The following scales, with scores ranging from 0 (worst) to 100 (best), will be used for analysis: Transfers and Basic Mobility Scale, Sports and Physical Functioning Scale, and Global Functioning Scale, which includes the preceding 2 scales in addition to an Upper-Extremity Scale and a Pain and Comfort Scale. The pediatric Outcomes Data Collection Instrument has been widely administered in children with CP; it has high internal consistency, moderate to good test-retest reliability, moderate to excellent concurrent validity with the Gross Motor Function Measure, and the ability to discriminate across motor groups for certain domains and is responsive to change after orthopedic surgery.

Data analysis was performed using:
Correlation test to detect relationship between variables

RESULTS
The results gained from group A (normally developed children) revealed direct relationship between rectus femoris muscle thickness and maximum isometric strength of quadriceps muscle as shown in figure (1) and it showed direct relationship between vastus lateralis muscle thickness and maximum isometric strength of quadriceps muscle as shown in figure (2).
Figure (1): Relationship between rectus femoris muscle thickness and maximum isometric strength of quadriceps muscle

Figure (2): Relationship between vastus lateralis muscle thickness and maximum isometric strength of quadriceps muscle

The results gained from pre-training evaluation of group B (spastic diplegic cerebral palsied children) revealed direct relationship between:

Rectus femoris thickness and isometric peak torque of quadriceps muscle as shown in figure (3).

Figure (3): Relation between rectus femoris thickness and maximum isometric strength of quadriceps muscle
Vastus lateralis thickness and isometric peak torque of quadriceps muscle as shown in figure (4).

Figure (4): Relation between vastus lateralis thickness and maximum isometric strength of quadriceps muscle

Rectus femoris thickness, vastus lateralis thickness and pediatric outcome data collection instrument (parent report and self-report) as shown in figure (5).

Figure (5): Rectus femoris thickness, vastus lateralis thickness and pediatric outcome data collection instrument (parent report and self-report).
4.- Isometric peak torque of the quadriceps muscle pediatric outcome data collection instrument (parent report and self-report) as shown in figure (6)

Figure (6): Isometric peak torque of the quadriceps muscle pediatric outcome data collection instrument (parent report and self-report).

The results gained from post-training evaluation of group B (spastic diplegic cerebral palsyed children) revealed direct relationship between:

Rectus femoris thickness and isometric peak torque of quadriceps muscle as shown in figure (7)

Figure (7): Rectus femoris thickness and isometric peak torque of quadriceps muscle.

Vastus lateralis thickness and isometric peak torque of quadriceps muscle as shown in figure (8)
Figure (8): Vastuslateralis thickness and isometric peak torque of quadriceps muscle.

Rectus femoris thickness, vastus lateralis thickness and pediatric outcome data collection instrument (parent report and self-report) as shown in figure (9).

Figure (9): Rectus femoris thickness, vastus lateralis thickness and pediatric outcome data collection instrument (parent report and self-report).
DISCUSSION

Cerebral palsy (CP) is a group of disorders of movement and posture, often characterized by impairments such as muscle weakness, spasticity (hyper tonicity), stiffness, and excessive co-contraction. In children and adolescents with CP, exercise and resistance training are important components of rehabilitation programs for counteracting these impairments at the muscle level, thus improving muscle force output and efficiency (Damiano, 1998).

Muscle architecture is defined as the internal arrangement of muscle fibers within a muscle and has been described as the primary determinant of muscle function. Because the architecture of a muscle determines the force-velocity properties of the muscle, including outcome measures of muscle architecture is of clinical importance. Such measures include physiological and anatomical cross-sectional areas, muscle thickness, and length and angle of fascicles (bundles of muscle fibers) (Liber R 2000).

Researchers are only beginning to understand the differences in muscle architecture in children and adolescents with CP and those with typical development (TD). Furthermore, information in the literature about how muscle architecture predicts muscle function in CP is scarce. Even more scarce are studies reporting on how muscle architecture predicts other impairments or activity levels in CP, which are important for informing clinical practice (Moreau N 2010).

The current study conducted to investigate the ability to use the muscle thickness as component of muscle architecture as method to predicts muscle power, functional impairment and activity level in children with cerebral palsy.

Our current study conducted on forty subjects included two groups group A included twenty normal development children and adolescents (age 12.38±0.4 years, body weight 41.135±1.125 kg and body tall
1.44±0.0425 m and consist of 13 male and 7female) and group B included twenty cerebral palsy patients (age12.172±0.484 years, body weight 33.52±0.89kg and body tall1.295±0.04 m). The gross motor classifications for group B was 13 subject level I and 7 subject level II. consist of 14 male and 6female).Both group A and group B evaluated for right rectus femoris muscle thickness and right vastus lateralis muscle thickness by sonography, isometric peak torque of the right quadriceps muscle by isokinetic dynamometer .Group B (cerebral palsy subjects) evaluated for their activity level by Adolescent outcome questioner parent report and Adolescent outcome questioner self-report. GroupA evaluated for one time only and group B evaluated for two times before and after six months of physical therapy program including strengthening of the right quadriceps muscle.

Correlation between group A rectus femoris muscle thickness and isometric peak torque of the quadriceps muscle showed strong direct relationship and correlation between group A vastus lateralis muscle thickness and isometric peak torque of the quadriceps muscle showed strong direct relationship.

Correlation between group B pre training evaluation results rectus femoris muscle thickness and isometric peak torque of the quadriceps muscle showed strong direct relationship and correlation between group B pre evaluation results vastus lateralis muscle thickness and isometric peak torque of the quadriceps showed strong direct relationship.

Correlation between pre training evaluation results rectus femoris muscle thickness and Adolescent outcome questionnaire parent report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between pre training evaluation results of vastus lateralis muscle thickness and Adolescent outcome questionnaire parent report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between pre training evaluation results rectus femoris muscle thickness and Adolescent outcome questionnaire self-report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between pre training evaluation results of vastus lateralis muscle thickness and Adolescent outcome questionnaire self-report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between pre training evaluation results of the isometric peak torque and both adolescent outcome questionnaire (parent report and self-report) showed strong direct relationship.

Correlation between group B post training evaluation results rectus femoris muscle thickness and isometric peak torque of the quadriceps muscle showed strong direct relationship and correlation between group B post evaluation results vastus lateralis muscle thickness and isometric peak torque of the quadriceps showed strong direct relationship.
Correlation between post training evaluation results rectus femoris muscle thickness and Adolescent outcome questionnaire parent report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between post training evaluation results of vastus lateralis muscle thickness and Adolescent outcome questionnaire parent report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between post training evaluation results rectus femoris muscle thickness and Adolescent outcome questionnaire self-report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Correlation between post training evaluation results of vastus lateralis muscle thickness and Adolescent outcome questionnaire self-report (Sports and physical functioning core scale, Transfer and basic mobility core scale, Global functioning scale) showed strong direct relationship.

Collection between post training evaluation results of isometric peak torque of the quadriceps muscle and both adolescent outcome questionnaire (parent report and self-report) showed strong direct relationship.

In this current study we suggest that muscle thickness as component of muscle architecture detected by sonography can be used as predictive tool to evaluate muscle power and functional level in children and young adolescent with cerebral palsy patients.

Our results added further support to those of Moreau et al (2010) who examined whether the architecture of the rectus femoris (RF) and vastus lateralis (VL) muscles was predictive of maximum voluntary knee extensor torque in children and adolescents with and without CP and whether these measures were related to activity and participation levels. Found that Ultrasound measures of VL muscle thickness, adjusted for age and GMFCS level, were highly predictive of maximum torque and have the potential to serve as an alternative measures of voluntary strength (force-generating capacity) in children and adolescents with and without CP.

Additionally, our results are in agreement with that reported by Abe et al (2000) who stated that although people with severe CP usually show muscle atrophy caused by palsy and limited activity, it is still possible that muscle thickness (MTH) measured by ultrasound imaging reflects muscle strength, at least to some extent. It has been proposed that quantitative ultrasonography is a potentially useful tool for studying skeletal muscle.

Our results also added further support to those of Elder et al (2003) and Mohagheghi et al (2007) who reported decreased anatomical cross-sectional area and thickness of the gastrocnemius muscles, respectively, on the paretic compared to non-paretic sides in children with hemiplegic CP.

Our results disagree with Shortland et al (2002) who used ultrasound imaging to evaluate muscle architecture in a small group of children with CP and a control group with TD. They observed no differences in fascicle angles and fascicle lengths between the groups.
CONCLUSION
Ultrasound measures of rectus femoris and vastus lateralis muscles thickness were highly predictive of isometric peak torque of the quadriceps muscle and activity level and have the potential to serve as surrogate measures of voluntary strength and activity level in children and adolescents.

REFERENCES

45. Julie D and Rebecca L (2006). Is there evidence to support the use of constraint-induced therapy to improve the quality or quantity of upper extremity function of a 2 1/2-year-old girl with congenital hemiparesis? If so, what are the optimal parameters of this intervention? Phys Ther May 86:746-752.

