Incidence of Color Blindness among State Junior High School 1 Medan Students in 2014

Authors

Nurchaliza Hazaria Siregar¹, Annisa Nidya Rahmatika Sitepu²

¹Department of Ophthalmology, Sumatera Utara University, Medical School, Medan, Indonesia
²Medical Students, Sumatera Utara University, Medical School, Medan, Indonesia

Corresponding Author

Nurchaliza Hazaria Siregar
MD, Department of Ophthalmology, Sumatera Utara University, Medical School
Ramos No.26/0 Medan – 20124, Indonesia
Tel.: +62 8126057923 Email: nurchalizas@yahoo.co.id

Abstract

Purpose: Color blindness is the inability to distinguish the perception of some colors or all colors, which normal person can do. Color blindness is a condition that generally is inherited genetically, but can also be obtained due to damage of the eye, nerves, or brain. Color blindness is genetically determined by X chromosome in females, and passed on to their children. This study was aimed to determine the incidence of color blindness among students of State Junior High School 1 Medan in 2014, according to their gender, family history, or according to the classification of color blindness.

Methods: The study was a descriptive study and was performed using total sampling technique (n= 242, male 113, female 129). Data collection was done by examining color blindness using the Ishihara Chart (38 Plates). Data analysis was performed by using descriptive analysis.

Results: The results of this study shows that among 242 total samples, 10 male students and one female student were found to be color blind, in which two of them are protanopia, 8 persons are deuteranopia, and one person is red-green deficiency. Of the 11 persons with color blindness, one of them had a family history of color blindness.

Key Words: Color blindness, students, Ishihara Plates.

INTRODUCTION

Color blindness is the inability to distinguish the perception of some colors or all colors, which a normal person can do.¹,²

Color blindness is a condition that generally inherited genetically, but can also obtained due to several medications, damage of the eye, nerves or brain.

Inherited color blindness is genetically determined by X chromosome in females an passed on to their children. Color blindness almost never occur to females because one of two X chromosome will
almost always have normal genes for each cone type. Where as in males, who only have one X chromosome, the other missing gene can cause color blindness. X chromosome of males are always inherited from mother and never from father, so that color blindness inherited from a mother to her son and the mother is called as a Carrier; this condition occur to 8% of all females.\[4\]

There are three types of inherited color blindness: \textit{monochromacy} (total color blindness), \textit{dichromacy} (only two types of functioning cone cells) and \textit{anomalous trichromacy} (three types of functioning cone cells, in which one of them not functioning well). \[1,5\] From all types of color blindness, the most common case is \textit{anomalous trichromatic}, especially \textit{deutranomaly} that is present in 5% of males.

Actually the cause of color blindness is not only by the X chromosome disorder, but can be related to 19 chromosome and many different genes. The two genes that are related to color blindness are \textit{OPN1LW (Opsin 1 Long Wave)}, encoding red pigment and \textit{OPN1MW (Opsin 1 Middle Wave)}, encoding green pigment.\[6\]

Generally, around 10% of total male population experienced color blindness, while females only 1%. According to the Riset Kesehatan Dasar (RISKESDAS) 2007, the prevalence of color blindness in Indonesia is 7.4%.

Color blindness can be detected by color blind test. One of color blind test method is Ishihara. \[1,5,8,9\]

Ishihara test is a test to detect any defect of color vision by identifying the numbers or patterns shown in the cards with various colors.

This study was aimed to determine the incidence of color blindness among students of State Junior High School 1 Medan in 2014, according to their gender, family history or according to the classification of color blindness.

METHODS

The study was a descriptive study, with a cross-sectional design conducted from 27th September 2014 to 14th October 2014.

Methods of sampling in this study was using total sampling technique, where the entire population was used as a sample.\[10\] Population in this study were all 9th grade students from State Junior High School 1 Medan, as many as 242 person, with these students as the inclusion criteria and the exclusion criteria was not willing to be a sample.

Collection of data obtained directly from the data source, through interviews to determine the demographic data and proceed with the examination using the \textit{Ishihara} books (38 Plate) that was conducted directly by researcher on research sample, then all the data that have been collected are recorded, classified and then processed using computer programs for appropriate statistic.

RESULTS

Based on the results of the examination of color blindness that has been done, it was found that from the 242 subjects, 231 subjects (95.5%) had normal test results and 11 subjects (4.54%) suffered from color vision defects, with the results of the examination: 2 persons (0.8%) were protanopia, 8 persons (3.3%) were deuteranopia, 1 person (0.4%)
was red-green deficiency and no one had monochromacy (0,0%).

Table 1. Distribution of study subjects according to the results of the examination of color blindness

<table>
<thead>
<tr>
<th>Results</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>231</td>
<td>95,5</td>
</tr>
<tr>
<td>Color Blindness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Protanopia</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>- Deuteranopia</td>
<td>8</td>
<td>3,3</td>
</tr>
<tr>
<td>- Red-green deficiency</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>- Monochromacy</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Total</td>
<td>242</td>
<td>100,0</td>
</tr>
</tbody>
</table>

This research also found that more male subjects (8.84%) had color blindness compared to female subjects (0.77%).

Table 2. Distribution of study subjects according to gender and color blindness test results

<table>
<thead>
<tr>
<th>Results</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Normal</td>
<td>103</td>
<td>91,1</td>
<td>128</td>
</tr>
<tr>
<td>Color Blindness</td>
<td>10</td>
<td>8,84</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>113</td>
<td>100,0</td>
<td>129</td>
</tr>
</tbody>
</table>

From 11 subjects who suffered from a color-blindness, 1 of them (9.09%) had a history of color blindness.

Table 3. The distribution of study subjects according to a history of color blindness and color blindness test results

<table>
<thead>
<tr>
<th>Results</th>
<th>Color Blindness History</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Normal</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Color Blind</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>
DISCUSSION

Based on the results of the examination of color blindness that has been done, it was found that from the 242 subjects, 231 subjects (95.5%) had normal test results and 11 subjects (4.54%) suffered from color vision defects, with the results of the examination: 2 persons (0.8%) were protanopia, 8 persons (3.3%) were deuteranopia, 1 person (0.4%) was red-green deficiency and no one had monochromacy (0.0%) (table 1).

According to research conducted in Pokhara, Western Nepal (2010), the number of children who had color blindness were about 18 persons (3.8%).[11] These results are not very different from the results obtained in this study. The results of this study are also comparable with research conducted in Singapore (4.8%) and Korea (5.9%). However, the results of this study is high when compared with the data obtained by Riset Kesehatan Dasar (RISKESDAS) (2007) which states that the national prevalence of color blindness was 0.7%.[7]

The results of this study are also different when compared with the results of previous research conducted by Situmorang, A.M (2010), which the results, persons who suffer from color blindness were 129 people (39.09%) with the results of the examination: 33 persons were protanopia (25.58%), 74 persons (57.36%) were deuteranopia, 21 persons (16.28%) were red-green deficiency and monochromacy by 1 person (0.78%).[12] But, generally the results are the same, which most of the subject suffer from color vision defect such as deuteranopia, then protanopia, red-green deficiency and last monochromacy.

It is also consistent with the study conducted in Manipur, India (2013) which subjects with vision disorders such as deuteranopia (20%) were more than the subjects who suffer vision disorder protanopia (8.57%), in which he stated that this happens because the green color receptors are more likely to be damaged than red or blue color receptors. But it is different with the statement of Botts, P, (2010) and Hogward Hughes Medical Institute (2006) which states that the most common color vision defect is red-green deficiency.[13]

In this study, it is also found that more male subjects (8.84%) had color blindness compared to female subjects (0.77%). (table 2)

This is consistent with some color blindness incidences in several different countries. In Australia, color blindness occurred in 8% of males and 0.4% in females. In Asia, about 4.9% of color blindness occurs in males and 0.6% in females. While in Europe, approximately 8% of the population were color blind, whereas 1-6% are of African nation, 2-7% South Asian nation, 3-6% of the East Asia nation and 1% of South American, Indian and Eskimo nation.

A study conducted in Manipur, India in 2012 also showed 8.73% of males and 1.69% of females experiencing color blindness. While the number of people with color blindness in Indonesia, according to a research conducted, 5-8% of males and 0.5% of females born with color blindness.

This study also found 11 research subjects who have color blindness, one of them (9.09%) have family history of color blindness (table 3). This is in-line with the fact that genetically inherited color blindness is carried by X chromosome in females,
and passed on to their children. Because the X chromosomes in males is always inherited from their mother, and never from their father, color blindness passed from mother to son, and mother is a carrier of color blindness. This incident occurred in about 8% of all females.

REFERENCES