Title: Glymphatic and Immun Systems of the Brain

Authors: Rengin Kosif, Ibrahim Kurtul, Sinem Kara, Umit Atasever, H. Kubra Koc Topcuoglu

 DOI: https://dx.doi.org/10.18535/jmscr/v10i5.18

Abstract

Even though brain lymphatic system has several peculiarities including the construction of the endothelial cells of the lymph vessels, in common with the lymphatic system of the body in general, studies have documented eminent discrepancy. Unique lymphatic system of the brain is called ‘’the glymphatic system’’ due to its lymphatic system-like function and glial-like fluid flow. Collaboratory functions of this system, and CSF and interstitial fluid has been documented. Recent discovery of this system has highlighted the requirement to review the diagnose and treatment procedures of several neuronal diseases. With this discovery, anatomic, physiopathologic, immunologic, and genetic natures of this system have attracted attention of scientists. This review has summarized the accumulating information on the lymphatic system of the brain, particularly focusing on the function of the glymphatic system in fetus and newborn, cranial tumors, neurodegenerative diseases, brain metabolism and its relationship with sleep, and anatomical posture of the body. Yet, the cells responsible with the brain immune system and their relationship with the glymphatic system have been discussed. By summarizing the latest information on the relationship of this system with immunologic, molecular, physiologic, and anatomical aspects of several neuronaldiseases, this paper will surely contribute to the diagnose and treatment of them through shedding light on the researchers.

Keywords: Brain, Glymphatic System, Immunity, Neuronal Disease.

References

  1. Iliff JJ, Nedergaard M. Is there a cerebral lymphatic system? Stroke 2013;44(Suppl. 1):93-5.
  2. Iliff JJ, Goldman SA, Nedergaard M. Implications of the discovery of brain lymphatic pathways. Vol. 14, The Lancet Neurology Lancet Publishing Group; 2015. p. 977–9.
  3. Mascagni P. Vasorum lymphaticorum corporis humanihistoria et ichnographia. Auctore Paulo Mascagni in Regio Senarum Lyceopublicoana-tomesprofessore. Senis: Ex typographia Pazzini Carli; 1787.
  4. Retzius, Gustaf: Key A. Studien in der Anatomie des Nervensystems und das Bindegewebe - Digitised Book from the copyright-free holdings of the Bavarian State Library Munich 2007-2020 Image-based Similarity Search. 1875.
  5. Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 2020;20(1):12-25.
  6. Cheng Y, Wang YJ. Meningeal Lymphatic Vessels: A Drain of the Brain Involved in Neurodegeneration? Neurosci Bull 2020;36(5):557-60.
  7. Sandrone S, Moreno-Zambrano D, Kipnis J, van Gijn J. A (delayed) history of the brain lymphatic system. Nat Med 2019;25(4):538-40.
  8. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015;523(7560):337-41.
  9. Mestre H, Mori Y, Nedergaard M. The Brain’s Glymphatic System: Current Controversies. Trends Neurosci 2020;43(7):458-66.
  10. Zamboni P. The discovery of the brain lymphatic system. Veins Lymphat 2015;4(2):5360.
  11. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 2015;212(7):991–9.
  12. Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019; 572(7767):62-6.
  13. Gardner RC, Burke JF, Nettiksimmons J, Goldman S, Tanner CM, Yaffe K. Traumatic brain injury in later life increases risk for Parkinson disease. Ann Neurol 2015;77(6):987-95.
  14. Kuo PH, Stuehm C, Squire S, Johnson K. Meningeal Lymphatic Vessel Flow Runs Countercurrent to Venous Flow in the Superior Sagittal Sinus of the Human Brain. Tomogr (Ann Arbor, Mich) 2018;4(3):99-104.
  15. Angelis LC, Witte MH, Bellini T, Bernas M, Boccardo F, Ramenghi LA, et al. Brain lymphatic drainage system in fetus and newborn: Birth of a new era of exploration. Lymphology 2018;51(4):140-7.
  16. Gonzalez FF, Vexler ZS, Shimotake J, Ferriero DM. Cellular and molecular biology of hypoxic-ischemic encephalopathy. In: Fetal and Neonatal Brain Injury. Cambridge University Press; 2017. p. 36-49.
  17. Teo JD, Morris MJ, Jones NM. Hypoxic postconditioning reduces microglial activation, astrocyte and caspase activity, and inflammatory markers after hypoxia-ischemia in the neonatal rat brain. Pediatr Res 2015;77(6):757-64.
  18. Zhang X, Zhang X, Wang C, Li Y, Dong L, Cui L, et al. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: Up-regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability. Brain Res 2012;1459:61-70.
  19. Li X, Bai R, Zhang J, Wang X. Effect of progesterone intervention on the dynamic changes of AQP-4 in hypoxic-ischaemic brain damage. Int J Clin Exp Med 2015;8(10):18831-6.
  20. Sun BL, Wang L hua, Yang T, Sun J yi, Mao L lei, Yang M feng, et al. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol 2018;163-164:118-43.
  21. Van Brussel I, Berneman ZN, Cools N. Optimizing dendritic cell-based immunotherapy: Tackling the complexity of different arms of the immune system. Vol. 2012, Mediators of Inflammation. Mediators Inflamm; 2012.
  22. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 2011;17(6):1603-15.
  23. Chertoff M, Shrivastava K, Gonzalez B, Acarin L, Giménez-Llort L. Differential modulation of TREM2 protein during postnatal brain development in mice. PLoS One. 2013;8(8):e72083. https://doi.org/10.1371/journal.pone.0072083
  24. Colonna M, Wang Y. TREM2 variants: New keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci 2016;17(4):201-7.
  25. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al. TREM2 Variants in Alzheimer’s Disease . N Engl J Med 2013;368(2):117-27.
  26. Yaghmoor F. The Role of TREM2 in Alzheimer’s Disease and Other Neurological Disorders. J Alzheimer’s Dis Park. 2014;04(05).
  27. Lim L, Sirichai P. Bone fractures: assessment and management. Aust Dent J. 2016;61:74-81.
  28. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The Changing Epidemiology of Autism Spectrum Disorders. Annu Rev Public Health 2017;20;38:81-102.
  29. Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, et al. The epigenetics of aging and neurodegeneration. Vol. 131, Progress in Neurobiology Elsevier Ltd; 2015. p. 21-64.
  30. Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, McKee CA, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat Commun2020;11(1):1-18.
  31. Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer’s Disease? Neuron Cell Press 2016;91:957-73.
  32. Wang J, Jin WS, Bu X Le, Zeng F, Huang ZL, Li WW, et al. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathol2018;136(4):525-36.
  33. Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 2019;103(4):627-641.e7.
  34. Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the ’glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife 2017;6.
  35. Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 2020;11(1).
  36. Lundgaard I, Wang W, Eberhardt A, Vinitsky HS, Reeves BC, Peng S, et al. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep 2018;8(1):1-16.
  37. Mendelsohn AR, Larrick JW. Sleep Facilitates Clearance of Metabolites from the Brain: Glymphatic Function in Aging and Neurodegenerative Diseases. Rejuvenation Research 2013;16:518-23.
  38. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science (80- ) 2013;342(6156):373-7.
  39. Mosienko V, Teschemacher AG, Kasparov S. Is L-lactate a novel signaling molecule in thebrain?.Vol. 35, Journal of Cerebral Blood Flow and Metabolism. Nature Publishing Group; 2015. p. 1069-75.
  40. Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Progress in Neurobiology 2008;86:264-80.
  41. Watts JC, Condello C, Stöhr J, Oehler A, Lee J, DeArmond SJ, et al. Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients. Proc Natl Acad Sci U S A 2014;111(28):10323-8.
  42. Chen Z, Wilson MA. Deciphering Neural Codes of Memory during Sleep. Vol. 40, Trends in Neurosciences. Elsevier Ltd; 2017. p. 260-75.
  43. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, et al. The effect of body posture on brain glymphatic transport. J Neurosci2015;35(31):11034-44
  44. Andresen M, Hadi A, Petersen LG, Juhler M. Effect of postural changes on ICP in healthy and ill subjects. Acta Neurochir (Wien) 2014;157(1):109-13.
  45. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399).
  46. Gupta A, Iadecola C. Impaired Aß clearance: A potential link between atherosclerosis and Alzheimer’s disease. Front Aging Neurosce 2015;7(May).
  47. Wang M, Ding F, Deng SY, Guo X, Wang W, Iliff JJ, et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci2017;37(11):2870-7.
  48. Boluijt J, Meijers JCM, Rinkel GJE, Vergouwen MDI. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: A systematic review. Vol. 35, Journal of Cerebral Blood Flow and Metabolism. Nature Publishing Group; 2015. p. 724-33.
  49. Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Vol. 8, Frontiers in Cellular Neuroscience. Frontiers Media S.A.; 2015
  50. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG. The ischemic environment drive s microglia and macrophage function. Front Neurol 2015;6 (Mar).
  51. Korkmaz A. The Effect Of Helicobacter Felis On Macrophage Polarization. Istanbul Teknik Universitesi Fen Bilimleri Enstitüsü Tez Çalışması; 2015 Jan.
  52. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: A study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2003;183(1):25-33.
  53. MLi, ZLi, HRen, WNJin, KWood, QLiu, et al. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2017;37(7):2383-95.
  54. BL Sun, ZL Xia, ZW Yan, YS Chen, MFYang. Effects of blockade of cerebral lymphatic drainage on cerebral ischemia after middle cerebral artery occlusion in rats. Clin Hemorheol Microcirc 2000;23(2-4):321-5.
  55. Sun BL, Xia ZL, Wang JR, Yuan H, Li WX, Chen YS, Yang MF, Zhang SM. Effects of blockade of cerebral lymphatic drainage on regional cerebral blood flow and brain edema after subarachnoid hemorrhage. Clin Hemorheol Microcirc 2006;34(1-2):227-32.
  56. Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao L, et al. Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol 2013;126(3):353-64.
  57. Gaberel T, Gakuba C, Goulay R, De Lizarrondo SM, Hanouz JL, Emery E, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: A new target for fibrinolysis? Stroke 2014;45(10):3092-6.
  58. Papadopoulos MC, Verkman AS. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 2005;280(14):13906-12.

Corresponding Author

Prof. Dr. Rengin Kosif

Kırıkkale University, Faculty of  Medicine, Department of Anatomy, Yahşihan/Kırıkkale, Türkiye