Title: Effect of Melatonin in High Sugar Diet fed Male Wistar rats on the levels of Plasma Glucose, Magnesium, and interleukin-6

Authors: Doddigarla Zephy, Lingidi Jhansi Lakshmi, Faizal Muhamad, Nelofer Kasmi, Prabhakar Singh Bais

 DOI:  https://dx.doi.org/10.18535/jmscr/v6i11.72

Abstract

Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder in which there is  insulin resistance and it is experienced by insulin sensitive tissues like skeletal muscle, adipose tissue, liver, and small part of cardiac tissue. The present study was conducted for 12 weeks in the male Wistar rats to investigate the effect of High Sugar Diet (HSD) and melatonin in relation to plasma glucose, serum levels of interleukin-6 (IL-6), and levels of Magnesium (Mg) in serum, liver, pancreas and kidney tissues. The study also investigate that melatonin administration increases the Mg levels in serum and above mentioned tissues. We observed increased levels of plasma glucose, serum IL-6, and lower levels of Mg in serum and kidney tissues in HSD rats when compared with control rats. After administration of melatonin to HSD rats, significant decrease was observed in the values of plasma glucose and serum IL-6. On the contrary, we observed significant increase in the levels of Mg in the serum and kidney tissues when melatonin was administered to HSD rats. Thus, we conclude that the response to melatonin administration for glucose, Mg, and IL-6 parameters is related to the degree of insulin resistance and the duration of the study. The response to melatonin is also related to physical stress, to the types of diet consumed.

Keywords: Diabetes Mellitus, Insulin Resistance, Hypomagnesemia, Interleukins.

References

  1. De Fronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care. 2009 Nov 1;32(suppl 2):S157-63.
  2. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13;414(6865):799.
  3. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001 Feb;409(6821):729.
  4. Lazo-de-la-Vega ML, Fernández-Mejía C. Oxidative stress in diabetes mellitus and the role of vitamins with antioxidant actions. In Oxidative Stress and Chronic Degenerative Diseases-A Role for Antioxidants 2013. InTech.
  5. Greenfield JR, Campbell LV. Relationship between inflammation, insulin resistance and type 2 diabetes:'cause or effect'?. Current diabetes reviews. 2006 May 1;2(2):195-211.
  6. Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DJ, Muskiet FA. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. The Journal of nutritional biochemistry. 2013 Jul 1;24(7):1183-201.
  7. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama. 2001 Jul 18;286(3):327-34.
  8. Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, Capella G, Canzian F. Association of common polymorphisms in inflammatory genes interleukin (IL) 6, IL8, tumor necrosis factor α, NFKB1, and peroxisome proliferator-activated receptor γ with colorectal cancer. Cancer research. 2003 Jul 1;63(13):3560-6.
  9. Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical chemistry. 2008 Jan 1;54(1):24-38.
  10. Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T, Okazaki Y, Ohsugi M. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell metabolism. 2011 Apr 6;13(4):401-12.
  11. Yu JH, Kim KH, Kim H. SOCS 3 and PPAR-γ ligands inhibit the expression of IL-6 and TGF-β1 by regulating JAK2/STAT3 signaling in pancreas. The international journal of biochemistry & cell biology. 2008 Jan 1;40(4):677-88.
  12. Nielsen FH, Milne DB, Klevay LM, Gallagher S, Johnson L. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. Journal of the American College of Nutrition. 2007 Apr 1;26(2):121-32.
  13. Ashcroft FM, Rorsman P. K ATP channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology. 2013 Nov;9(11):660.
  14. Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA1c. Diabetes care. 2003 Mar 1;26(3):881-5.
  15. Huerta MG, Roemmich JN, Kington ML, Bovbjerg VE, Weltman AL, Holmes VF, Patrie JT, Rogol AD, Nadler JL. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes care. 2005 May 1;28(5):1175-81.
  16. Humphries S, Kushner H, Falkner B. Low dietary magnesium is associated with insulin resistance in a sample of young, nondiabetic Black Americans. American journal of hypertension. 1999 Aug 1;12(8):747-56.
  17. Takaya J, Higashino H, Kobayashi Y. Intracellular magnesium and insulin resistance. Magnesium research. 2004 Jun 1;17(2):126-36.
  18. Garland HO, Birdsey TJ, Davidge CG, McLaughlin JT, Oakes LM, Smith AJ, Harpur ES. Effects of gentamicin, neomycin and tobramycin on renal calcium and magnesium handling in two rat strains. Clinical and experimental pharmacology and physiology. 1994 Feb;21(2):109-15.
  19. Huether G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia. 1993 Aug 1;49(8):665-70.
  20. Ha E, Yim SV, Chung JH, Yoon KS, Kang I, Cho YH, Baik HH. Melatonin stimulates glucose transport via insulin receptor substrate‐1/phosphatidylinositol 3‐kinase pathway in C2C12 murine skeletal muscle cells. Journal of pineal research. 2006 Aug;41(1):67-72.
  21. Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, Scherrer U, Duplain H. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology. 2009 Oct 9;150(12):5311-7.
  22. Nishida S, Segawa T, Murai I, Nakagawa S. Long‐term melatonin administration reduces hyperinsulinemia and improves the altered fatty‐acid compositions in type 2 diabetic rats via the restoration of Δ‐5 desaturase activity. Journal of pineal research. 2002 Jan;32(1):26-33.
  23. Rosales‐Corral S, Tan DX, Reiter RJ, Valdivia‐Velázquez M, Martínez‐Barboza G, Pablo Acosta‐Martínez J, Ortiz GG. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid‐β peptide in rat brain: a comparative, in vivo study versus vitamin C and E. Journal of pineal research. 2003 Sep;35(2):80-4.
  24. Redwine L, Hauger RL, Gillin JC, Irwin M. Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. The Journal of Clinical Endocrinology & Metabolism. 2000 Oct 1;85(10):3597-603.
  25. Garcia-Maurino S, Gonzalez-Haba MG, Calvo JR, Rafii-El-Idrissi M, Sanchez-Margalet V, Goberna R, Guerrero JM. Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. The Journal of Immunology. 1997 Jul 15;159(2):574-81.
  26. Clapp-Lilly KL, Smith MA, Perry G, Duffy LK. Melatonin reduces interleukin secretion in amyloid-β stressed mouse brain slices. Chemico-biological interactions. 2001 Mar 14;134(1):101-7.
  27. Doddigarla Z, Ahmad J, Parwez I. Effect of chromium picolinate and melatonin either in single or in a combination in high carbohydrate diet‐fed male Wistar rats. Biofactors. 2016 Jan;42(1):106-14.
  28. Adeyi, A. O., Idowu, B. A., Mafiana, C. F., Oluwalana, S. A., Ajayi, O. L., et al. (2012) Rat model of food-induced non-obese-type 2 diabetes mellitus: comparative pathophysiology and histopathology. Int. J. Physiol. Pathophy-siol. Pharmacol. 4, 51.
  29. Stanhope KL. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annual review of medicine. 2012 Feb 18;63:329-43.
  30. Tryon MS, Stanhope KL, Epel ES, Mason AE, Brown R, Medici V, Havel PJ, Laugero KD. Excessive sugar consumption may be a difficult habit to break: a view from the brain and body. The Journal of Clinical Endocrinology & Metabolism. 2015 Jun 1;100(6):2239-47.
  31. Stanhope KL, Schwarz JM, Havel PJ. Adverse metabolic effects of dietary fructose: results from recent epidemiological, clinical, and mechanistic studies. Current opinion in lipidology. 2013 Jun;24(3):198.
  32. Stanhope KL. Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical reviews in clinical laboratory sciences. 2016 Jan 2;53(1):52-67.
  33. Turrens JF. Mitochondrial formation of reactive oxygen species. The Journal of physiology. 2003 Oct;552(2):335-44.
  34. Bulkley GB. The role of oxygen free radicals in human disease processes. Surgery. 1983 Sep 1;94(3):407-11.
  35. McNair PE, Christensen MS, Christiansen C, Madsbad S, Transbøl IB. Renal hypomagnesaemia in human diabetes mellitus: its relation to glucose homeostasis. European journal of clinical investigation. 1982 Feb;12(1):81-5.
  36. Kao WL, Folsom AR, Nieto FJ, Mo JP, Watson RL, Brancati FL. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: the Atherosclerosis Risk in Communities Study. Archives of Internal Medicine. 1999 Oct 11;159(18):2151-9.
  37. De Valk HW, Verkaaik R, Van Rijn HJ, Geerdink RA, Struyvenberg A. Oral magnesium supplementation in insulin‐requiring Type 2 diabetic patients. Diabetic medicine. 1998 Jun;15(6):503-7.
  38. Paolisso G, Scheen A, d'Onofrio F, Lefebvre P. Magnesium and glucose homeostasis. Diabetologia. 1990 Sep 1;33(9):511-4.
  39. Schnack CH, Bauer I, Pregant P, Hopmeier P, Schernthaner G. Hypomagnesaemia in type 2 (non-insulin-dependent) diabetes mellitus is not corrected by improvement of long-term metabolic control. Diabetologia. 1992 Jan 1;35(1):77-9.
  40. Quamme GA. Renal magnesium handling: new insights in understanding old problems. Kidney international. 1997 Nov 1;52(5):1180-95.
  41. Navarro-Alarcon M, Villalón M, Jiménez C, Quesada-Granados J, Agil A. Melatonin increases magnesium concentrations in white adipose tissue and pancreas of diabetic obese rats. Journal of Functional Foods. 2018 Sep 1;48:167-72.

Corresponding Author

Dr Prabhakar Singh Bais

Assistant Professor, Department of Biochemistry, MLB Medical College, Jhansi Uttar Pradesh, India