Title: Combined Therapeutic Effects of Arsenic Trioxide and Poly (Adp-Ribose) Polymerase Inhibitor on Chronic Myeloid Leukaemia Cell Line

Authors: Xuesong Wen, Sylvia Ifeoma Obu

 DOI: https://dx.doi.org/10.18535/jmscr/v6i10.235

Abstract

Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder that takes its origin from haematopoietic pluripotent stem cells and the difficulty in its treatment has been well documented. Arsenic trioxide (ATO) is currently the most effective single first line anti-cancer agent in the treatment of acute promyelocytic leukaemia (APL). Its use in the treatment of other leukaemias including CML and solid cancers has been widely reported. However, different levels of dose-dependent cell toxicity and resistance of cancer cells have been observed. Combination treatment with other cancer therapeutic drugs can sometimes aid in overcoming resistance to anticancer drugs. This study aimed to explore the therapeutic effect of ATO in combination with 3, 4-dihydro-5-[4-(1-piperidinyl) butoxy]-1(2H)- isoquinolinone (DPQ), a poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor, on apoptosis of CML cell line, K562. Annexin-V/FITC and (propadium iodide) PI dual staining by flow cytometry was used to detect and quantify apoptosis after 48 h incubation of cells treated with ATO and DPQ singly and combined. Also, flow cytometry analysis for cell cycle distribution was performed after staining cell nuclei with DRAQ7 stain. Confocal fluorescence microscopy analysis for apoptosis was carried out on cells stained with triple staining solution of Annexin-V/FITC, PI and DAPI. Results obtained from these experiments showed that ATO alone could induce the cells to undergo early apoptosis. Although the combination therapy induced slightly increased apoptosis than ATO alone (D = 0.02), it was not significant enough to be considered an additive or synergistic effect. Results of the cell cycle analysis showed that ATO failed to induce cell cycle arrest in any of the phases whereas DPQ as well as ATO in combination with DPQ induced G2/M arrest. Visual examination of the drug treated cells under confocal microscopy revealed that ATO alone and combination of 1.25 µM ATO and DPQ 40 nM induced early apoptosis in K562 cells. Taking all the experimental results together, ATO alone induced apoptosis in K562 cells whereas combination of DPQ and ATO failed to significantly enhance ATO-induced apoptosis. However, continued study of the combination of ATO and DPQ at varied concentrations will give a better insight into the potential of this combination as a promising strategy in the treatment of CML.

Keywords: Therapeutic effect, arsenic trioxide, Adp-ribose, polymerase inhibitor, chronic myeloid leukemia.

References

  1. Sobecks, R. M., & Theil, K. (2003) Leukaemias. The Cleveland Clinic Foundation. (online) Available at http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/he matology-oncology/chronic- leukemias/. [Accessed 8th of June 2015]
  2. Yang, H., Lin, S., & Cui, J. (2014) “Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles”. Gene535 (2): 312-317.
  3. Campana, D. (2008) “Molecular determinants of treatment response in acute lymphoblastic leukemia”. ASH Education Program Book, 2008 (1): 366-373.
  4. Moore, G., Knight, G., Blann, A. (2010) Fundamentals of Haematology. Oxford: Oxford University Press.
  5. Saedi, T. A., Noor, S. M., Ismail, P., Othman, F. (2014) “The effects and fruits on leukaemia”. Evidence-Based Complementary and Alternative Medicine vol 2014 pp 1-8.
  6. Mathers, C. D., Boschi-Pinto, C., Lopez, A. D., & Murray, C. J. L. (2001) Cancer Incidence, Mortality and Survival by Site for 14 Regions of the World, Global Programme on Evidence for Health Policy, Discussion Paper no. 13
  7. Zaini, R., Small, S. L. H., Cross, N. A., & Le Maitre, C. L. (2015) Differential interactions of falcarinol combined with anti-tumour agents on cellular proliferation and apoptosis in human lymphoid leukaemia cell lines. J Blood Disorders Transf, 6(258): 2.
  8. Zhu, X., Li, Y., Luo, X., Fei, J. (2012) “Inhibition of small GTPase RaIA regulates growth and arsenic-induced apoptosis in chronic myeloid leukemia (CML) cells”. Cellular Signalling 24, pp 1134-1140.
  9. Campbell, K. (2013) Chronic myeloid leukaemia. Leukaemia and Lymphoma Research (Online resource) Available at www.lrf.org.uk [Accessed 10th April, 2015].
  10. Fausel, C. (2007) “Targeted chronic myeloid leukemia therapy: seekinh a cure”. Supplement To Journal of Managed care Pharmacy, 13, S8-S12.
  11. Thomas, E. K., Cancelas, J. A., Zheng, Y., & Williams, D. A. (2008) “Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis”. Leukemia, 22 (5): 898-904.
  12. Marley, S. B., Davidson, R. J., Goldman, J. M., & Gordon, M. Y. (2002) “Effects of combinations of therapeutic agents on the proliferation of progenitor cells in chronic myeloid leukaemia”. British Journal of Haematology, 116 (1): 162-165.
  13. O'Dwyer, M. E., La Rosée, P., Nimmanapalli, R., Bhalla, K. N., & Druker, B. J. (2002) “Recent advances in Philadelphia chromosome–positive malignancies: The potential role of arsenic trioxide”. In Seminars in Hematology, 39 (2): 18-21.
  14. Sengupta, A., Arnett, J., Dunn, S., Williams, D. A., & Cancelas, J. A. (2010) “Rac2 GTPase deficiency depletes BCR-ABL+ leukemic stem cells and progenitors in vivo”. Blood, 116 (1): 81-84.
  15. Alonso‐Dominguez, J. M., Grinfeld, J., Alikian, M., Marin, D., Reid, A., Daghistani, M., Hedgley, C., O’Brien, S., Clark, R. E., Apperley, J. & Gerrard, G. (2015). “PTCH1 expression at diagnosis predicts imatinib failure in chronic myeloid leukaemia patients in chronic phase”. American Journal of Hematology, 90 (1): 20-26.
  16. Emadi, A., & Gore, S. D. (2010) “Arsenic trioxide—an old drug rediscovered”. Blood reviews, 24 (4): 191-199.
  17. Evens, A. M., Tallman, M. S., & Gartenhaus, R. B. (2004) “The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future”. Leukemia research, 28 (9): 891-900.
  18. Saad-El-Din, A. A., El-Tanahy, Z. H., El-Sayed, S. N., Anees, L. M., & Farroh, H. A. (2014) “Combined effect of arsenic trioxide and radiation on physical properties of hemoglobin biopolymer”. Journal of Radiation Research and Applied Sciences, 7 (4): 411-416.
  19. Soignet, S. L., Frankel, S. R., Douer, D., Tallman, M. S., Kantarjian, H., Calleja, E., Stone, R. M., Kalaycio, M., Scheinberg, D. A., Steinherz, P., Sievers, E. L., Contre, S., Dahlberg, S., Ellison, R., & Warrell, R. P. (2001) “United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia”. Journal of Clinical Oncology, 19 (18): 3852-3860.
  20. Venepalli, N. K., Altman, J. K., & Tallman, M. S. (2006) “Evolving role of arsenic trioxide in acute promyelocytic leukemia”. Clinical Leukemia, 1 (1): 36-40.
  21. Park, M. T., Kang, Y. H., Park, I. C., Kim, C. H., Lee, Y. S., Chung, H. Y., & Lee, S. J. (2007) “Combination treatment with arsenic trioxide and phytosphingosine enhances apoptotic cell death in arsenic trioxide–resistant cancer cells”. Molecular cancer therapeutics, 6 (1): 82-92.
  22. Uslu, R., Sanli, U. A., Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S. B., & Goker, E. (2000) “Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines”. Clinical Cancer Research, 6 (12): 4957-4964.
  23. Luo, Q., Li, Y., Deng, J., & Zhang, Z. (2015) “PARP-1 inhibitor sensitizes arsenic trioxide in hepatocellular carcinoma cells via abrogation of G2/M checkpoint and suppression of DNA damage repair”. Chemico-biological interactions, 226, 12-22.
  24. Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015) “Cancer nanomedicine: from targeted delivery to combination therapy”. Trends in Molecular Medicine, 21 (4): 223-232.
  25. Du, Y., Wang, K., Fang, H., Li, J., Xiao, D., Zheng, P., Chen, Y., Fan., Pan, X., Zhao, C., Zhang, Q., Imbeaud,S., Graudens, E., Eveno, E., Auffray, C., Chen., Chen., C., & Zhang, J. (2006) “Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia”. Blood, 107 (4): 1582-1590.
  26. Li, L., Zhang, J. D., Liu, Y. P., & Hou, K. Z. (2008). The effect of arsenic trioxide (As2O3) on proliferation and cell cycle in gastric cancer cell line BGC-823. Journal of Oncology, 14 (3) 190-193.
  27. Hu, J., Fang, J., Dong, Y., Chen, S. J., & Chen, Z. (2005) “Arsenic in cancer therapy”. Anti-cancer drugs, 16 (2): 119-127.
  28. Zheng, P. Z., Wang, K. K., Zhang, Q. Y., Huang, Q. H., Du, Y. Z., Zhang, Q. H., Xiao, D. K., Shen, S. H., Imbeaud, S., Eveno, E., Zhao, C. J.,Chen Y. L., Fan, H. Y., Waxman, S., Auffary, C., Jin, G., Chen, S. J., Chen, Z., & Zhang, J. (2005). Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7653-7658.
  29. Perkins, C., Kim, C. N., Fang, G., & Bhalla, K. N. (2000) “Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-xL”. Blood, 95 (3): 1014-1022.
  30. Redstone, G. G., Nichol, J. N., Faubert, B., Jones, R. G., Mann, K. K., & Miller, W. H. (2014) “Selective killing of oncogenically transformed cells by arsenic trioxide and trolox”. Cancer Research, 74 (19 Suppl): 491-491.
  31. Konig, H., Härtel, N., Schultheis, B., Schatz, M., Lorentz, C., Melo, J. V., Hehlmann, R., Hochhaus, A. & La Rosée, P. (2007) “Enhanced Bcr-Abl-specific antileukemic activity of arsenic trioxide through glutathione-depletion in imatinib-resistant cells”. Haematologica92(6): 838-841.
  32. Puccetti, E., Güller, S., Orleth, A., Brüggenolte, N., Hoelzer, D., Ottmann, O. G., & Ruthardt, M. (2000) “BCR-ABL mediates arsenic trioxide-induced apoptosis independently of its aberrant kinase activity”. Cancer research, 60 (13): 3409-3413.
  33. Damia, G., & Garattini, S. (2014) “The pharmacological point of view of resistance to therapy in tumors”. Cancer Treatment Reviews, 40 (8): 909-916.
  34. Kashimura, M., & Ohyashiki, K. (2010) “Successful imatinib and arsenic trioxide combination therapy for sudden onset promyelocytic crisis with t (15; 17) in chronic myeloid leukemia”. Leukemia Research, 34(8), e213-e214.
  35. Chen, Z., Chen, G. Q., Shen, Z. X., Sun, G. L., Tong, J. H., Wang, Z. Y., & Chen, S. J. (2002, April). Expanding the use of arsenic trioxide: leukemias and beyond. In Seminars in Hematology, 39, (2): 22-26.
  36. Audeh, M. W., Carmichael, J., Penson, R. T., Friedlander, M., Powell, B., Bell-McGuinn, K. M., Scott, C., Weitzel, J. N., Oaknin, A., Loman, N., Lu, K., Schmutzler, R., Matulonis, U., Wickens, M. & Tutt, A. (2010) “Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial”. The Lancet, 376 (9737): 245-251.
  37. Lord, C. J., Tutt, A. N., & Ashworth, A. (2015) “Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors”. Annual Review of Medicine, 66, pp 455-470.
  38. Irshad, S., & Tutt, A. (2015). Clinical Trials Investigating PARP Inhibitors as Single Agents. In PARP Inhibitors for Cancer Therapy (pp. 487-510). Springer International Publishing.
  39. Menear, K. A., Adcock, C., Boulter, R., Cockcroft, X. L., Copsey, L., Cranston, A., Dillon, K. J., Drzewiecki, J., Garman, S., Gomez, S., Javaid, H., Kerrigan, F., Knights, C., Lau, A., Loh, V. M., Matthews, I. T. W., Moore, S., O’Connor, M. J., Smith, G. C. M., & Martin, N. M. (2008) “4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2 H-phthalazin-1-one: a novel bioavailable inhibitor of poly (ADP-ribose) polymerase-1”. Journal of Medicinal Chemistry, 51 (20): 6581-6591.
  40. Penning, T. D., Zhu, G. D., Gandhi, V. B., Gong, J., Liu, X., Shi, Y., Klinghofer, V., Johnson, E. F., Donawho, C. K., Frost, D. J., Bontcheva-Diaz, V., Bouska, J. J., Osterling, D. J., Olson, A. M., Marsh, K. C., Luo, Y., & Giranda, V. L. (2008) “Discovery of the poly (ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1 H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer”. Journal of Medicinal Chemistry, 52 (2): 514-523.
  41. Tong, Y., Bouska, J. J., Ellis, P. A., Johnson, E. F., Leverson, J., Liu, X., Marcotte, P. A., Olson, A. M., Osterling. D. J., Przytulinska, M., Rodriguez, L. E., Shi, Y., Soni, N., Stavropoulos, J., Thomas, S., Donawho, C. K., Frost, D., Luo, Y., Giranda, V. L., & Penning, T. D. (2009) “Synthesis and evaluation of a new generation of orally efficacious benzimidazole-based poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents”. Journal of medicinal chemistry, 52 (21): 6803-6813.
  42. Raja, W. K., Satti, J., Liu, G., & Castracane, J. (2013) “Dose response of MTLn3 cells to serial dilutions of arsenic trioxide and ionizing radiation”. Dose-Response, 11 (1): 29-40.
  43. Sousa, F. G., Matuo, R., Soares, D. G., Escargueil, A. E., Henriques, J. A., Larsen, A. K., & Saffi, J. (2012) “PARPs and the DNA damage response”. Carcinogenesis, 33 (8): 1433-1440.
  44. Swindall, A. F., Stanley, J. A., & Yang, E. S. (2013): “PARP-1: friend or foe of DNA damage and repair in tumorigenesis?”. Cancers, 5 (3): 943-958.
  45. Horton, J. K., & Wilson, S. H. (2013b). “Strategic Combination of DNA-Damaging Agent and PARP Inhibitor Results in Enhanced Cytotoxicity”. Frontiers in Oncology, 3, 257.
  46. Weil, M. K., & Chen, A. P. (2011) “PARP inhibitor treatment in ovarian and breast cancer”. Current Problems in Cancer, 35 (1): 7-50.
  47. Akagi, J., Kordon, M., Zhao, H., Matuszek, A., Dobrucki, J., Errington, R., Smith, P. J., Takeda, K., Darzynkiewicz, Z., & Wlodkowic, D. (2013) ‘Real‐time cell viability assays using a new anthracycline derivative DRAQ7®’. Cytometry Part A, 83(2), pp 227-234.
  48. Elmore, S. (2007) “Apoptosis: a review of programmed cell death2. Toxicologic pathology, 35 (4): 495-516.
  49. Mathews, V., George, B., Lakshmi, K. M., Viswabandya, A., Bajel, A., Balasubramanian, P., Velayudhan Shaji, R., Srivastava, V. M., Srivastava, A., & Chandy, M. (2006). Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood, 107 (7): 2627-2632.
  50. Sgonc, R., & Gruber, J. (1998). Apoptosis detection: an overview. Experimental gerontology, 33 (6), pp 525-533.
  51. Riccardi, C., & Nicoletti, I. (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature protocols, 1 (3), pp 1458-1461.
  52. Raja, W. K., Satti, J., Liu, G., & Castracane, J. (2013) “Dose response of MTLn3 cells to serial dilutions of arsenic trioxide and ionizing radiation”. Dose-Response, 11 (1): 29-40.
  53. Chiu, H. W., Lin, J. H., Chen, Y. A., Ho, S. Y., & Wang, Y. J. (2010) “Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis”. Autophagy, 6 (3): 353-365.
  54. Kumar, P., Gao, Q., Ning, Y., Wang, Z., Krebsbach, P. H., & Polverini, P. J. (2008) “Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone”. Molecular cancer therapeutics, 7 (7): 2060-2069.
  55. Sousa, F. G., Matuo, R., Soares, D. G., Escargueil, A. E., Henriques, J. A., Larsen, A. K., & Saffi, J. (2012) “PARPs and the DNA damage response”. Carcinogenesis, 33 (8): 1433-1440.
  56. Swindall, A. F., Stanley, J. A., & Yang, E. S. (2013): “PARP-1: friend or foe of DNA damage and repair in tumorigenesis?”. Cancers, 5 (3): 943-958.
  57. Horton, J. K., & Wilson, S. H. (2013b). “Strategic Combination of DNA-Damaging Agent and PARP Inhibitor Results in Enhanced Cytotoxicity”. Frontiers in Oncology, 3, 257.
  58. Weil, M. K., & Chen, A. P. (2011) “PARP inhibitor treatment in ovarian and breast cancer”. Current Problems in Cancer, 35 (1): 7-50.
  59. Akagi, J., Kordon, M., Zhao, H., Matuszek, A., Dobrucki, J., Errington, R., Smith, P. J., Takeda, K., Darzynkiewicz, Z., & Wlodkowic, D. (2013) ‘Real‐time cell viability assays using a new anthracycline derivative DRAQ7®’. Cytometry Part A, 83(2), pp
  60. Audeh, M. W., Carmichael, J., Penson, R. T., Friedlander, M., Powell, B., Bell-McGuinn, K. M., Scott, C., Weitzel, J. N., Oaknin, A., Loman, N., Lu, K., Schmutzler, R., Matulonis, U., Wickens, M. & Tutt, A. (2010) “Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial”. The Lancet, 376 (9737): 245-251.

Corresponding Author

Xuesong Wen

Email: This email address is being protected from spambots. You need JavaScript enabled to view it., +447809771092