Title: Magnetic Resonance Spectroscopy — Revisiting the Imaging Aspects of Brain Tumors

Authors: Kalyani Parida, Dvijottam Biswal

 DOI:  https://dx.doi.org/10.18535/jmscr/v5i6.226

Abstract

Imaging still remains one of the powerful and non-invasive tools in the field of medicine and biological research. Over time, various imaging tools continue to develop, especially when it comes to the management of brain tumor patients. This research article summarizes the state-of-the art Magnetic Resonance Spectroscopy (MRS) applications in the etiology of brain tumors. In this article, we discuss MR imaging as a tool to diagnose patients with different kinds of brain tumors. This article also discuss the application of MR Spectroscopy in delineating the type, nature and stages of different brain tumors with respective to the alteration of chemical thumbprints in brain tumor tissues. We review the importance and applications of MRS in general, imaging sequences and image mapping in the context of different types of brain tumors and its cellular and physiological characteristics. With an aim to study the demographic profiles of tumor patients with brain neoplasms and to correlate our findings of Magnetic Resonance Imaging (MRI) to that of MRS, this article provides a basis for understudying the role of MRS to evaluate the biology of different types of brain tumors.

Keywords- Magnetic Resonance Spectroscopy, Brain Neoplasm, Imaging.

References

1.      Zulch KJ. Histological typing of tumours of the central nervous system. Geneva: World Health Organization, 1979.

2.      Kleihues P, Sobin LH. World Health Organization classification of tumors. Cancer 2000: 88: 2887. doi: 10.1002/1097-0142(20000615)88:12<2887::AID-CNCR32>3.0.CO;2-F

3.      Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol 1993: 3: 255-268. doi: 10.1111/j.1750-3639.1993.tb00752.x

4.      Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 2007: 114: 97-109.

5.      Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol 2006: 27: 475-487. doi: 10.1007/s00401-007-0243-4

6.      Belden CJ, Valdes PA, Ran C, Pastel DA, Harris BT, Fadul CE, Israel MA, Paulsen K, Roberts DW. Genetics of glioblastoma: a window into its imaging and histopathologic variability. Radiographics 2011: 31: 1717-1740. doi: 10.1148/rg.316115512

7.      Bangiyev L, Rossi Espagnet MC, Young R, Shepherd T, Knopp E, Friedman K, Boada F, Fatterpekar GM. Adult brain tumor im­aging: state of the art. Semin Roentgenol 2014: 49: 39-52. doi: 10.1053/j.ro.2013.11.001

8.      Bloch F. Nuclear Induction. Phys Rev 1946: 70: 460-474. doi: 10.1103/PhysRev.70.460

9.      Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL. Accurate non-invasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996: 2: 323-325.

10.  Wen PY, Cloughesy TF, Ellingson BM, Reardon DA, Fine HA, Abrey L, Ballman K, Bendszuz M, Buckner J, Chang SM, Prados MD, Pope WB, Sorensen AG, Bent Mvd, Yung WA. Report of the jumpstarting brain tumor drug development coalition and FDA clinical trials neuroimaging endpoint workshop (January 30, 2014, Bethesda MD). Neuro Oncol. 2014: 16 (Suppl 7): vii36–vii47.

11.  Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Lalezari S, Zaw T, Motevalibashinaeini K, Mischel PS, Pope WB. Quantification of edema reduction using differential quantitative T2 (DQT2) relaxometry mapping in recurrent glioblastoma treated with bevacizumab. J NeuroOncol 2012: 106: 111–119. doi: 10.1007/s11060-011-0638-x

12.  Ellingson BM, Lai A, Nguyen HN, Nghiemphu PL, Pope WB, Cloughesy TF. Quantification of Nonenhancing tumor burden in gliomas using effective T2 maps derived from dual-Echo turbo spin-Echo MRI. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015: 21: 4373–4383.

13.  Bruhn H Frahm J, Gyngell ML Merboldt KD, Hänicke W, Sauter R, Hamburger C. Noninvasive differentiation of tumors with use of localized proton MR spectroscopyin vivo Initial experience in patients with cerebral tumors. Radiology 1989: 172: 541-548. doi: 10.1148/radiology.172.2.2748837

14.  Castillo M Kwock L, Mukherji SK. Clinical Applications of proton MR Spectroscopy. AJNR Am J Neuroradiol 1996: 17: 1-15.

15.  Saraswathy S, Crawford FW, Lamborn KR, Pirzkall A, Chang S, Cha S, Nelson SJ. Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 2009: 91: 69–81. doi: 10.1007/s11060-008-9685-3

16.  Crawford FW, Khayal IS, McGue C, Saraswathy S, Pirzkall A, Cha S, Lamborn KR, Chang SM, Berger MS, Nelson SJ. Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J Neurooncol 2009: 91: 337–351. doi: 10.1007/s11060-008-9719-x

17.  Arslanoglu A, Bonekamp D, Barker PB, Horská A. Quantitative proton MR spectroscopic imaging of the mesial temporal lobe. J Magn Reson Imaging 2004: 20: 772–778. doi: 10.1002/jmri.20195

18.  Chan AA, Lau A, Pirzkall A, et al. Proton Magnetic Resonance Spectroscopy Imaging in the Evaluation of Patients Undergoing Gamma Knife Surgery for Grade IV Glioma. J Neurosurg 2004: 101: 467–475.

19.  Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U, Franz K, Setzer M, Gasser T, Tews DS, Zanella FE, Seifert V, Lanfermann H. Stereotactic biopsy in gliomas guided by 3-tesla 1H– chemical-shift imaging of choline. Stereotact Funct Neurosurg 2008: 86: 300–307. doi: 10.1159/000155232

20.  Di Costanzo A, Scarabino T, Trojsi F, Giannatempo GM, Popolizio T, Catapano D, Bonavita S, Maggialetti N, Tosetti M, Salvolini U, d'Angelo VA, Tedeschi G. Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 2006: 48: 622–631. doi: 10.1007/s00234-006-0102-3

Corresponding Author

Kalyani Parida

Utkal University, S.C.B. Medical College & Hospital, Cuttack, Odisha, India