Title: Evaluation of Homocysteine, hsCRP and Microalbuminuria in Hypertensives without and with end Organ Damage-A Case Control Study

Authors: Hermes R.S, Dr Santhi Silambanan, Dr Emmanuel Bhaskar, Dr Kalaiselvi V.S.

 DOI:  https://dx.doi.org/10.18535/jmscr/v5i6.05

Abstract

 Background: Homocysteine considered to be a marker of endothelial dysfunction is formed from a sulfur-containing amino acid, methionine. The total plasma homocysteine levels are between 5-15 µmol / L in healthy individuals. As reported by various prevalence studies, the rate is found to be comparitively higher in Indians with a mean level of 19.5-23.2 µmol / L. Hyperhomocysteinemia is  the most common risk factor for stroke and cardiovascular diseases by causing  vascular dysfunction. Elevated levels of homocysteine could also lead to alterations in mediators of endothelial vasodilatation.

Methods: A total of 496 individuals between the age group of 20-55 years of age, from both sexes who were attending the Hypertensive clinic and Master health check up programme in Sri Ramachandra Medical College & Research Institute were enrolled for the study. They were grouped as three-Group I being controls, group II being hypertensives without complications and group III being hypertensives with end organ damage. After overnight fasting, blood and spot urine samples were collected. All the biochemical parameters were estimated by standard methodologies. The plasma homocysteine was determined by ELISA method (Axis Shield, UK), urinary microalbumin and hsCRP was determined by Immunoturbidimetric method. Albumin Creatinine Ratio (ACR) was also calculated.

Results: The results are expressed as Mean ± SD. The mean values of SBP, DBP and BMI showed a statistically highly significant difference between the 3 groups (p<0.001). Regarding the biochemical parameters LDL c, Chol /HDL ratio , the renal parameters  microalbumin, ACR  and the markers plasma homocysteine and the hsCRP levels showed a statistically highly significant A strong positive correlation was detected between hsCRP and DBP between the group 2 & 3.

Conclusion: The inflammatory marker hsCRP was found to show a strong positive association with DBP among hypertensives with and without end organ damage indicating that the process of inflammation starts early in the disease. Homocysteine correlates with urinary microalbumin and albumin /creatinine ratio indicating that renal dysfunction could be due to hyperhomocysteinemia

A significant increase in microalbumin, hsCRP and homocysteine in essential hypertensives suggests that monitoring the levels of these parameters would be of great value in assessing the onset of end organ damage in essential hypertensives. Hyperhomocysteinemia plays a role in the setting of endothelial morphology and function.

Keywords: cardiovascular risk, Endothelial dysfunction, essential hypertension, Homocysteine, hscrp,  microalbuminuria.

References

1.  1.      Agrawal V, Marinescu V, Agarwal M . Cardiovascular implications proteinuria: an indicator of chronic kidney disease. Nat Rev Cardiol 2009 ;  6: 301-31

2.      Stanger O, Weger M .. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med 2003 ;41: 1444-1454.

3.      LI Jian-jun. Inflammation in hypertension: primary evidence. Chin Med J. 2006;119:1215-21.

4.      Pauleto P, Rattazzi M. Inflammation and Hypertension: the search for a link. Nephrol Dial Transplant 2006;21:850-3

5.      Jakubowski H . The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease JPP 2008; 59: 155–167.

6.      Niittynen L, Nurminen ML, Korpela R. Role of arginine, taurine and homocysteine in cardiovascular diseases. Ann Med 1999; 31: 318-326.

7.      Rodrigo R, Passalacqua W, Araya J . Homocysteine and essential hypertension. J Clin Pharmacol 2003 ;43: 1299-1306

8.      Lip GY, Edmunds E, Martin SC .A pilot study of homocysteine levels in essential hypertension: relationship to von Willebrand factor, an index of endothelial damage. Am J Hypertens 2001 ;14: 627-631.

9.      Sainani GS, Sainani R . Homocysteine and its role in the pathogenesis of atherosclerotic vascular disease. J Assoc Physicians India 2002 ; 50: 5-8.

10.  Kumagai H, Katoh S, Hirosawa K. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia. Kidney Int 2002 ;62: 1219–1228.

11.  Yi F, Dos Santos EA, Xia M. Podocyte injury and glomerulosclerosis in Hyperhomocysteinemia rats. Am J Nephrol 2007 ;27: 262–268.

12.  Yun L, Xu R, Zhang L. The role of micro albuminuria in arterial endothelial dysfunction in hypertensive patients with carotid plaques. Int Heart 2014 ;J 55: 153159.

13.  Färbom P, Wahlstrand B, Almgren P . Interaction Between Renal Function and Micro albuminuria for Cardiovascular Risk in Hypertension: The Nordic Diltiazem Study. Hypertension 2008 ;52: 115-122.

14.  Polonla J, Carmona J, Mendes E, Pisco L .Prevalence of Microalbuminuria in Non-Diabetic Hypertensive Patients Attended by Portuguese GPs. Rev Port Cardiol 2007; .26: 637-644.

15.  Rodriguez-Iturbe, B., Vaziri, N.D., Herrara-Acosta, J. and Johnson, R.J.  Oxidative stress, renal infilteration of immune cells and salt-sensitive hypertension: All for one and one for all. Am. J. Physiol. Renal Physiol 2004 ; 286: F606-F616.

16.  Wenlin MA, Ruhui LIU, Lin LI, Weiqi SHI, Liang DENG, Yan JIN and Ming LUO J   The Relationship between Micro Albuminuria and Plasma Homocysteine Level in Chinese Patients with Hypertension. J Hypertens 2014;, 3:5

17.  Joseph J, Loscalzo J. Methoxistasis: integrating the roles of homocysteine and folic acid in cardiovascular pathobiology. Nutrients,2013 ;15: 3235-3256

18.  Woo KS, Chook P, Lolin YI (1997) Hyperhomocyst(e) inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation 96: 2542-2544.

19.  Castro R, Rivera I, Blom HJ . Homocysteine metabolism,hyperhomocysteinemia and vascular disease: an overview. J Inherit Metab Dis 2006 ; 29: 3-20.

20.  Marti F .Hyperhomocysteinemia is independently associated with albuminuria in the population-based CoLaus study. BMC Public Health 2011 ; 26:11:733.

21.  Ingram AJ, Krepinsky JC, James L Activation of mesangial cell mapk in response to homocysteine. Kidney Int  2004 ; 66: 733-745.

22.  Yi F, Zhang AY, Li N .Inhibition of ceramide-redox signaling pathway  blocks glomerular injury in hyperhomocysteinemia rats. Kidney Int  2006 ;70: 88–96.

23.  Hwang SY, Woo CW, Au-Yeung KK .Homocysteine stimulates monocyte chemo attractant protein-1 expression in the kidney via nuclear factor-kappaB activation. Am J Physiol Renal Physiol 2008 ; 294: F236–F244.

24.  Wollesen F, Brattstrom L, Refsum H .Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 1999 ; 55: 1028–1035.

25.  Davies L, Wilmshurst EG, McElduff A (2001) The relationship among homocysteine, creatinine clearance, and albuminuria in patients with type 2 diabetes. Diabetes Care 24: 1805–1809.

26.  Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R,Lee ME. Promotion of vascular smooth muscle cell growth by homocysteine:a link to atherosclerosis. Proc Natl Acad Sci U S A. 1994;91:6369–6373.

27.  Chico A, Perez A, Cordoba A, Arcelus R, CarrerasG, de Leiva A, Gonzales-Sastre F, Blanco-Vaca F.Plasma homocysteine is related to albumin excretionrate in patients with diabetes mellitus: a new link between diabetic nephropathy and cardiovascular disease? Diabetologia 1998;41:684-693.

28.  Emoto M, Kanda H, Shoji T, Kawagishi T, Komatsu M, Mori K, Tahara H, Ishimura E, Inaba M, Okuno Y, Nishizawa Y. Impact of insulin resistance andnephropathy on homocysteine in type 2 diabetes Diabetes Care 2001;24:533-538.

 

29.  Lanfredini M, Fiorina P, Peca MG, Veronelli A,Mello A, Astorri E, Dall’Aglio P, Craveri A. Fasting and post-methionine load homocyst(e)ine values are correlated with microalbuminuria and could contribute to worsening vascular damage in noninsulin-dependent diabetes mellitus. Metabolism 1998;47:915-921

30.  Dudman NP, Guo XV, Gordon RB, Dawson PA,Wilcken DE. Human homocysteine catabolism:Three major pathways and their relevance to development of arterial occlusive disease. J Nutr 1996;126 :1295S-3000S.

31.  House JD, Brosnan ME, Brosnan JT. Character-ization of homocysteine metabolism in the rat kidney. Biochem J 1997;328:287-292.

32.  Brattström L, Lindgren A, Israelsson B, Andersson A, Hultberg B. Homocysteine and cysteine:determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 1994;236:631-641.

33.  Bostom A, Brosnan JT, Hall B, Nadeau MR, Selhub J. Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 1995;116:59-62.

34.  Rohde LE, Hennekens CH, Ridker PM. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am J Cardiol. 1999;84:1018-22.

35.  Bermudez EA, Rifai N, Buring J, Manson JE,Ridker PM. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler Thromb Vasc Biol. 2002;22:1668-73.

36.  Dawri S, Padwal MK, Melinkeri R. Evaluation of high sensitivity C-reactive protein and serum lipid profile in prehypertension and essential hypertension. NJIRM. 2014 Jan-Feb;5(1):1-5.

37.  Ryu SY, Lee YS, Park J, Kang MG, Kim KS.Relations of plasma high-sensitivity C-reactive protein to various cardiovascular risk factors. J Korean Med Sci. 2005;20:379-83. 

38.  M. Shafi Dar, A. A. Pandith, A. S. Sameer, M. Sultan, A. Yousuf, S. Mudassar. hs-CRP: a potential marker for hypertension in Kashmiri population.Indian J Clin iochem.2010;25(2):208-12.

39.  Sesso HD, Bruing JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:294551.

40.  Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells; implications for the metabolic syndrome and atherothrombosis. Circulation. 2003;107:398-404.

41.  Wang CH, Li SH, Weisel RD, Fedak PW, Dumont AS, Szmitko P, et al. C-reactive protein upregulates angiotensin type 1 receptors in vascular smooth muscle. Circulation. 2003;107:1783-90.

42.  Pauleto P, Rattazzi M. Inflammation and Hypertension: the search for a link. Nephrol Dial Transplant. 2006;21:850-3.

43.  Bautista LE, Lopez- Jaramillo, Vera LM, Casas JP,Otero AP, Guaracao AI. Is C-Reactive Protein an independent risk factor for essential hypertension? J Hypertens. 2001;19(5):857-61.

44.  Mendall MA, Patel P, Ballam L, Strachan D,Northfield TC. C-reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study. BMJ. 1996;312:1061-5.

45.  Sung KC, Suh JY, Kim BS, Kang JH, Kim H, Lee MH, et al. High sensitivity C-reactive protein as an independent risk factor for essential hypertension.Am J Hypertens. 2003;16:429-33. 

46.  King DE, Egan BM, Mainous AG 3rd, Geesey ME. Elevation of C-reactive protein in people with prehypertension. J Clin Hypertens. 2004;6:562-8.

47.  Gupta AK, Johnson WD. Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu. J Inflammation. 2010;7:36.

48.  Bautista LE, Lopez- Jaramillo, Vera LM, Casas JP, Otero AP, Guaracao AI. Is C-Reactive Protein an independent risk factor for essential hypertension? J Hypertens. 2001;19(5):857-61.

49.  Dawri S, Padwal MK, Melinkeri R. Evaluation of high sensitivity C-reactive protein and serum lipid profile in prehypertension and essential hypertension. NJIRM. 2014 Jan-Feb;5(1):1-5.

50.  A. I. Qureshi, M. F. Suri, J. F. Kirmani, A. A.Divani, Y. Mohammad. Is prehypertension a risk factor for cardiovascular diseases? Stroke.2005;36(9):1859-63.

51.  Nicoletti A, Michel JB. Cardiac fibrosis and inflammation: interaction with hemodynamic and hormonal factors. Cardiovasc Res. 1999;41:532–43. [PubMed]

52.  Siwik DA, Colucci WS. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev. 2004;9:43–51. [PubMed]

53.  Yambe M, Tomiyama H, Hirayama Y, et al. Arterial stiffening as a possible risk factor for both atherosclerosis and diastolic heart failure. Hypertens Res. 2004;27:625–31. [PubMed]

54.  Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20. [PubMed]

55.  Pirro M, Schillaci G, Savarese G, et al. Low-grade systemic inflammation impairs arterial stiffness in newly diagnosed hyper- cholesterolaemia. Eur J Clin Invest. 2004;34:335–41. [PubMed]

56.  Kass DA. Ventricular arterial stiffening: integrating the   pathophysiology.  Hypertension. 2005;46:185–93.[PubMed]

57.  Kuwahara F, Kai H, Tokuda K, et al. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension. 2004;43:739–45. [PubMed]

58.  Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000;46:214–24.[PubMed]

59.  Lin R, Liu J, Gan W, Yang G. C-reactive protein-induced expression of CD40-CD40L and the effect of lovastatin and fenofibrate on it in human vascular endothelial cells. Biol Pharm Bull. 2004;27:1537–43.[PubMed]

60.  Lee SW, Song KE, Shin DS, et al. Alterations in peripheral blood levels of TIMP-1, MMP-2, and MMP-9 in patients with type-2 diabetes. Diabetes Res Clin Pract. 2005;69:175–9. [PubMed]

Corresponding Author

Hermes R.S

research scholar, dept of biochemistry Sri Ramachandra Medical College and Research Institute,

Sri Ramachandra University, Chennai, India

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.