Title: Association between Serum Malondialdehyde and Insulin in Type 2 Diabetes Mellitus in Eastern India

Authors: Vineet Kumar Khemka, Ravela Malathi, Anindita Banerjee, Pradip Kumar Agrawal, Chandra Narayan Gupta, Vijay Raghavan

 DOI:  https://dx.doi.org/10.18535/jmscr/v5i4.221

Abstract

Objectives: Oxidative stress and insulin plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). The aim of our study was to study the altered levels of serum insulin and malondialdehyde and putatively establish their association in T2DM individuals.

Methods: The preliminary case-control study included age, sex and body mass index (BMI) matched 56 T2DM cases and 42 healthy control subjects. Serum MDA was measured using a spectrophotometer while fasting serum levels of insulin was measured by commercially available immunoassay kits as well as routine biochemical parameters were analyzed in all study and control subjects.

Results: Serum MDA level was observed significantly higher among T2DM subjects with respect to controls (p < 0.0001). An increase in serum insulin levels were also found in T2DM cases as compared to controls and were statistically significant (p < 0.0001). Further, serum MDA level showed a significant weak positive correlation with fasting plasma insulin (r = 0.265; P = 0.047) level among T2DM subjects, but no significant correlation was observed in controls (r = 0.114; P = 0.471).

Conclusion: The association between serum MDA and insulin suggests that it may be used as a prognostic marker for the pathogenesis of T2DM.

Keywords: Diabetes Mellitus, Oxidative stress, Malondialdehyde, Insulin, Insulin resistance.

References

1.      American Diabetes Association, Diagnosis and classification of diabetes mellitus.  Diabetes Care. 2012;35:S64-S71. 

2.      Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical conse-quences, and medical therapy: part I. Euro-pean Heart Journal. 2013;34:2436–2443.

3.      Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002; 288: 2579-88.

4.      King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: preval-ence, numerical estimates, and projecti-ons. Diabetes Care 1998; 21: 1414–1431.

5.      Ramachandran A, Das AK, Joshi SR, Yajnik CS, Shah S, Kumar KMP. Current status of diabetes in India and need for novel therapeutic agents. Journal of Association of Physicians of India. 2010;58:7–9.

6.      Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia.2003; 46: 3–19.

7.      Brownlee M. The pathobiology of diabetic complications: a unifying mechanism.  Diabetes. 2005;54:1615–1625.

8.      Basta G, Lazzerini G, Massaro M et al., Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105:816–822.

9.      Kowluru RA, Chan PS. Oxidative stress and diabetic retinopathy. Experimental Diabesity Research. 2007;2007:43603.

10.  Shodehinde SA, G. Oboh. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro. Asian Pacific Journal of Tropical Biomedicine. 2013;3:449–457.

11.  Pandey KB,Rizvi SI. Biomarkers of oxidative stress in red blood cells.  Biomedical Papers.2011;155:131–136.

12.  Moussa SA. Oxidative stress in diabetes mellitus. Romanian Journal of Biophysics. 2008;18:225–236.

13.  Bandeira SM, Guedes GS, Fonseca LJS, Pires AS, Gelain DP, Moreira JC. Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxidative Medicine and Cellular Longevity. 2012;2012:819310.

14.  Satoh K. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta. 1978; 90:37–43

15.  Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 4th edition, 2007.

16.  Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clinical Biochemistry. 2010;43:508–511.

17.  Gomes EC, Silva AN, Oliveira MR. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative Medicine and Cellular Longevity. 2012;2012:756132.

18.  Freitas M, Gomes A, Porto G, Fernandes E. Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. Journal of Biological Inorganic Chemistry. 2010;15:1275–1283.

19.  Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signalling.  American Journal of Physiology: Lung Cellular and Molecular Physiology. 2000;279:L1005–L1028.

20.  Sen CK. Antioxidant and redox regulation of cellular signaling: introduction.  Medicine and Science in Sports and Exercise. 2001;33:368–370.

21.  Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation Research.2010;107:1058–1070.

22.  Negre-Salvayre A,Salvayre R, Auge N, Pamplona R, Portero-Otin M. Hyperglycemia and glycation in diabetic complications. Antioxidants and Redox Signaling. 2009;11:3071–3109.

23.  Martín-Gallan P, Carrascosa A, Gussinyé M, Domínguez C. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free RadicBiol Med. 2003;34:1563–1574. 

24.  Varvarovska J, Racek J, Stozický F, Soucek J, Trefil L, Pomahacová R. Parameters of oxidative stress in children with Type 1 diabetes mellitus and their relatives. J Diabetes Complications. 2003; 17:7–10.

25.  Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garcia I, Orgiazzi J, Revol A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency.  ClinChimActa. 2002;321:89–96. 

26.  VanderJagt DJ, Harrison JM, Ratliff DM, Hunsaker LA, Vander Jagt DL. Oxidative stress indices in IDDM subjects with and without long-term diabetic complications.  ClinBiochem. 2001;34:265–270.

27.  Brownlee M. The pathobiology of diabetic complications: a unifying mechanism.  Diabetes. 2005;54:1615–1625.

28.  Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus.World J Diabetes. 2015; 6: 456–480.

29.  Ceriello A. Oxidative stress and glycemic regulation. Metabolism: Clinical and Experimental. 2000;49:27–29.

30.  Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondial-dehyde in diabetes mellitus. Diabetologia. 2000;43:550–557.

31.  Kaefer M, de Carvalho JAM, Piva SJ et al., Plasma malondialdehyde levels and risk factors for the development of chronic complications in type 2 diabetic patients on insulin therapy. Clinical Laboratory. 2012; 58:973–978.

32.  Khemka VK, Choudhuri S, Ganguly A, Ghosh A, Bir A, Banerjee A. Lipid peroxidation and antioxidant status in nonobese type 2 diabetes mellitus. Advances in Endocrinology. 2014;2014: 830761.

Corresponding Author

Dr Vineet Kumar Khemka

Assistant Professor, Dept. of Biochemistry

ICARE Institute of Medical Sciences and Research  Haldia, West Bengal – 721645. India.

Ph: +91- 9903290420 (M) Email: This email address is being protected from spambots. You need JavaScript enabled to view it.