Title: The Potential Role of Apparent Diffusion Coefficient Values In the Differentiation of Infective and Tuberculous Lymph Nodes of Neck - In Correlation with Histopathology

Authors: Dr Praveen Sharma MD, Dr Rujuta Narendra Rege MD, Dr Adipudi Renuka MD, Dr Avinash Naikwadi DNB, Prof. Dr Kulasekaran DMRD MD, Dr C.R. Seena MD DNB

 DOI:  https://dx.doi.org/10.18535/jmscr/v5i4.200

Abstract

Study was done in 40 patients to ascertain the different causes of cervical lymphadenopathy. 13 patients with cervical lymph node metastasis from infective etiology and 27 patients with tuberculous lymphadenitis underwent conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI). The ADC values of necrotic and solid portions of lymph nodes were measured and compared. Receiver operating characteristic (ROC) analysis was employed to investigate whether ADC values could help to distinguish between the causes of cervical lymphadenopathy.

Aims: To assess the role of MRI with the help of DWI and ADC to differentiate infectivefrom  tuberculous lymph nodes.

Objective: To calculate statistical parameters in the differentiation of infective and tuberculous lymph nodes of neck using diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) values with histopathological examination as the gold standard.

Methods and Material

Inclusion Criteria

·         Patients presenting with cervical lymphadenopathy detected either clinically or by other radiological investigations. In case of multiple lymph nodes, largest will be included in the study.

·         Patients who undergo biopsy for the same.

Exclusion Criteria

·         Patients with cervical lymph node of size less than 15mm in short axis on USG

·         Painful lymph nodes.

·         Patients with contraindications for MR examination.

·         Patients not willing to participate in the study

Results: In our study we found that the range of ADC values for tuberculous cervical lymph nodes was between 0.99- 1.01 ×10-3mm2/s in the solid portion of the lymph node and 1.27 – 1.31×10-3mm2/s in the necrotic portion of the lymph node. The mean of ADC values for infective cervical lymph nodes was between 1.0 – 1.2 ×10-3mm2/s in the solid portion and in the necrotic portion the values – NIL. The „p‟ value was <0.001, this showed that there is good agreement between the ADC values and the histopathology results.

Conclusions: The ADC values both of the necrotic and solid portions of the lymph nodes are useful in differentiation between the causes of cervical lymphadenopathy. The ADC value of necrosis is especially helpful in discriminating infective from tuberculosis.

Key-words: DWI, ADC value , solid and necrotic portion of lymph nodes.

References

1.      Koc¸ O, Paksoy Y, Erayman I, Kivrak AS, Arbag H. Role of diffusion weighted MR in the discrimination diagnosis of the cystic and/or necrotic head and neck lesions. Eur J Radiol 2007;62:205-213.

2.      Castelijns JA, van den Brekel MW. Imaging of lymphadenopathy in the neck. EurRadiol 2002;12:727-738.

3.      King AD, Tse GM, Ahuja AT, et al. Necrosis in metastatic neck nodes: Diagnostic accuracy of CT, MR imaging, and US. Radiology 2004;230:720-726.

4.      Van den Brekel MW, Castelijns JA, Snow GB. The size of lymph nodes in the neck on sonograms as a radiologic criteria for metastasis: How reliable is it? AJNR Am J Neuroradiol 1998;19(4):695-700.

5.      Van den Brekel MW, Castelijns JA, Snow GB. Detection of lymph node metastases in the neck, radiologic criteria. Radiology 1994;192(3):617618.

6.      Curtin HD, Ishwaran H, Mancuso AA, Dalley RW, Caudry DJ, McNeil BJ (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207:123-130.

7.      Veit P, Ruehm S, Kuehl H, et al. Lymph node staging with dual-modality PET/CT: Enhancing the diagnostic accuracy in oncology. Eur J Radiol 2006;58:383-389.

8.      De Bondt RB, Nelemans PJ, Hofman PA, et al. Detection of lymph node metastases in head and neck cancer: A meta-analysis comparing US, USgFNAC, CT and MR imaging. Eur J Radiol 2007;64:266-272.

9.      Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168:497-505.

10.  Herneth AM, Guccione S, Bednarski M. Apparent diffusion coefficient: Aquanti-tative parameter for in vivo tumor characterization. Eur J Radiol 2003;45:208 -213.

11.  11.Qizilbash AH, Young JEM, Eds. Lymph nodes. Inguides to Clinical Aspiration Biopsy: Head and Neck. New York: Igaku-Shoin 1988;117203.

12.  Hall FG. The functional anatomy of lymph nodes. In Stansfeld AG, D‟Ardenne AJ, eds. Lymph Node Biopsy Interpretation. London: Churchill Livingstone, 1992; 328.

13.  Castenholz A. Architecture of the lymph node with regard to its function. In Grundmann E, Vollmer E, eds. Reaction Patterns of the Lymph Node. Part 1. Cell Types and Functions 1. New York: SpringerVerlag, 1990;1-32.

14.  Papadimitriou CS, Kittas CN. Normal structure and function of lymph nodes. In Pangalis GA, Polliack A, eds. Benign and malignant lymphadenopathies. Chur: Harwood Academic Publishers, 1993;113-130.

15.  Rouvie‟re H, Tobias MJ. Anatomy of the human lymphatic system. Ann Arbor (MI): Edwards brothers, inc; 1938. ix,318.

16.  Shah JP, et al. Surgical grand rounds. Neck dissection: current status and future possibilities. Clin Bull 1981;11(1):25-33.

17.  .Robbins KT. Classification of neck dissection: Current concepts and future considerations. OtolaryngolClin North Am 1998;31(4):639-655.

18.  Robbins KT, et al. Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg 2002;128(7):751-758.

19.  Som PM, Curtin HD, Mancuso AA. An imaging-based classification for the cervical nodes designed as an adjunct to recent clinically based nodal classify-cations. Arch Otolaryngol Head Neck Surg 1999;125(4):388-396.

20.  Robbins KT, et al. Consensus statement on the classification and terminology of neck dissection. Arch Otolaryngol Head Neck Surg 2008;134(5): 536-538.

21.  Vincent Chong. Cervical Lymphaden-opathy: what radiologists need to know? Cancer imaging (2004) 4; 116-120.

22.  Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H et al.Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol. 2003 Sep;24(8):1627-34.

23.  Hudgins PA. Contrast enhancement in head and neck imaging. Neuroimaging Clin North Am 1994;4(1):101-115.

24.  Shah GV, et al. New directions in head and neck imaging. J SurgOncol 2008;97 (8):644-648.

25.  Zima A, et al. Can pretreatment CT perfusion predict response of advanced squamous cell carcinoma of the upper aerodigestive tract treated with induction chemotherapy? AJNR Am J Neuroradiol 2007;28(2):328-334.

26.  Bisdas S, et al. Quantitative measurements of perfusion and permeability of oropharyngeal and oral cavity cancer, recurrent disease, and associated lymph nodes using first-pass contrast-enhanced computed tomography studies. Invest Radiol 2007;42(3):172-179.

27.  Abdel Razek AA, Gaballa G. Role of perfusion magnetic resonance imaging in cervical lymphadenopathy. J Comput Assist Tomogr 2011;35(1):21-25.

28.  Le Bihan D, Turner R. Intravoxel incoh-erent motion imaging using spin echoes. MagnReson Med 1991;19(2):221-227.

29.  Le Bihan D, et al. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology1986;161(2):401-417.

30.  Turner R, et al. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990;177(2):407-414.

31.  Le Bihan DJ, Turner R. Diffusion and perfusion. In: Stark DD, Bradley WG, editors. Magnetic resonance imaging. St. Louis: Mosby; 1992;335.

32.  Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 1995;8(7-8):375-386.

33.  Herneth AM, Guccione S, Bednarski M. Apparent diffusion coefficient: A quantitative parameter for in vivo tumor characterization. Eur J Radiol 2003;45(3):208-213.

34.  Lang P, et al. Osteogenic sarcoma: Noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 1998;206(1):227-235.

35.  Herneth AM, et al. Vertebral metastases: Assessment with apparent diffusion coefficient. Radiology 2002;225(3):889-894.

36.  Latour LL, et al. Time-dependent diffusion of water in a biological model system. ProcNatlAcadSci USA 1994;91(4):1229-1233.

37.  Le Bihan D, et al. Diffusion MR imaging: Clinical applications. AJR Am J Roentgenol 1992;159(3):591-599.

38.  Le Bihan D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988;168(2):497-505.

39.  Szafer A, et al. Diffusion-weighted imaging in tissues: Theoretical models. NMR Biomed 1995;8(7–8):289-296.

40.  Carr H, Purcell E. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954;94:630-635.

41.  Conturo TE, et al. Diffusion MRI: Precision, accuracy and flow effects. NMR Biomed 1995;8(7-8):307-332.

Corresponding Author

Dr Praveen Sharma MD

Assistant Professor, Saveetha Medical College and Hospital