Title: Minimum Biofilm Eradication Concentration (MBEC) Assay of Silver and Selenium Nanoparticles against Biofilm forming Staphylococcus aureus

Authors: Poonam Verma, Sanjiv Kumar Maheshwari

 DOI:  https://dx.doi.org/10.18535/jmscr/v5i4.77

Abstract

 Staphylococcus aureus is a most important bacterium that causes nosocomial infections and the etiologic agent of a wide range of diseases related with major mortality and morbidity. Total 36 positive clinical samples viz. urine, blood and pus collected from different patients were found to harbor Staphylococcus aureus with a maximum isolation from pus samples i.e. 30 (83.33%) and minimum isolation from urine samples i.e. 2 (5.56%). The degree of capacity to biofilm forming Staphylococcus aureus isolates to different phenotypic analysis of biofilm formation by Congo red agar (CRA) Nil, Tube method (TM) 5 (13.89%), and Tissue culture plate method (TCP) 12 (33.33%). The application of silver and Selenium nanoparticles as antimicrobials are gaining relevance in the medical field. Silver nanoparticles, due to their unique properties, use in day-by-day many applications in human life. The major uses of silver nanoparticles in the clinical and medical fields consist of investigative applications and curative applications. Selenium metal is an essential micronutrient for human beings and animals. Selenium nanoparticles showed the highest bactericidal and antimicrobial properties. Minimal biofilm eradication concentrations (MBEC) were determined by 96-well microtitre plate. The antibacterial effects of silver and selenium nanoparticles were evaluated with respect to growth, biofilm formation of Staphylococcus aureus strains. Among the three biofilm forming Staphylococcus aureus strains showed OD450 i.e. 0.019, 0.039, 0.075 value ≤0.080 for AgNPs whereas SeNPs couldn’t showed any ≤ 0.080 value against biofilm forming S. aureus strains. In case of MBEC test, AgNPs showed more affective against biofilm forming Staphylococcus aureus strains in compared of SeNPs. Finally we suggested that AgNPs showing best antimicrobial activity against SeNPs.

Keywords: Biofilm, Nosocomial infection, Biofilm forming Staphylococcus aureus, Silver nanoparticles, Selenium nanoparticles.

References

1.      Foster TJ, and McDevitt D, Molecular basis of adherence of staphylococci to biomaterials. In Bisno AL, Waldvogel FA (eds): Infections Associated with Indwelling Medical Devices, 2nd Edition, American Society for Microbiology, Washington, 31, 1994.

2.      Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, and Greenberg EP, Gene expression in Pseudomonas aeruginosa biofilms. Nature 2001; 413: 860-864.

3.      Stewart PS and Costerton JW, Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358:135-138.

4.      Schuster, M, Lostroh CP, Ogi T, and Greenberg EP, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum controlled genes, a transcriptome analysis. J. Bacteriol 2003; 185:2066-207.

5.      Wimpenny JWT, Peters A and Scourfield M, Modelling spatial gradients. In: Structure and function of biofilms. Characklis WG, Wilderer PA, editors. Chichester: John Wiley & Sons 1989; 111-127.

6.      Verma P, Maheshwari SK, Mathur A. A review on bacterial biofilm formation and disassembly. Int J Pharm Sci Res. 2013; 4(8):2900–6.

7.      Costerton JW, Lewandowski Z, Caldwell D, Korber D and Lappin-Scott HM, Microbial biofilms, Annu. Rev. Microbiol 1995; 49:711–745.

8.      Gilbert P and McBain AJ, Biofilms: their impact on heath and their recalcitrance toward biocides. American Journal of Infection Control 2001; 29:252–255.

9.      Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, and Whyte FW, The physiology and collective recalcitrance of microbial biofilm communities. Advanced Microbial Physiology 2002; 46:202-256.

10.  Panacek,A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V.K., Nevecna T., and Zboril R. J.Phys.Chem.B 2006; 110:16248-16253.

11.  Roldan M.V., Frattini A.L., Sanctis O.A., and Pellegrini N.S. Synthesis of silver nanoparticles by chemical reduction method. Anales AFA 2005; 17:212-217.

12.  Yin H., Yamamoto T., Wada Y., and Yanagida S. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics 2004; 83(1): 66-70.

13.  Zhu Z., Kai L., and Wang Y. Synthesis and Applications of Hyperbranched Polyesters-Preparation and Characterization of Crystalline Silver Nanoparticles. Materials Chemistry and Physics. Materials Chemistry and Physics 2006; 96:447-453.

14.  Edelstein A.S., R.C. Cammarata (Eds.) Nanomaterials, synthesis, properties and applications (1996), Bristol and Philadelphia Publishers, Bristol.

15.  Maillard M., Giorgo S., and Pileni M.P. Silver Nanodisks. Adv. Mater 2002; 14(15):1084-1086.

16.  Mock J.J., Barbic M., Smith D.R., Schultz D.A., and Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002; 16(15): 6755-6759.

17.  Duran N, Marcato PD, Alves OL, Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology 2005; 3(8):1-7.

18.  Zhu J.J., Liao X.H., Zhao X.N., and Hen H.Y. Preparation of Silver Nanorods by Electrochemicall Methods. Materials Letters 2001; 49:91-95.

19.  Pacios R., Marcilla R., Pozo-Gonzalo C., Pomposo J.A., Grande H., Aizpurua J., and Mecerreyes D. J. Nanosci.Nanotechnology 2007; 7:2938-2941.

20.  Shahverdi A.R., Fakhimi A., Shahverdi H.R., and Minaian M.S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nonomedicine 2007; 3(2):168-171.

21.  Clark LC, Dalkin B, and Krongrad A, et al. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol. 1998; 81(5):730–734.

22.  Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 2005; 64(4):527–542.

23.  Clark LC, Combs GF Jr, and Turnbull BW, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996; 276(24):1957–1963.

24.  Wei WQ, Abnet CC, and Qiao YL, et al. Prospective study of serum selenium concentrations and esophageal and gastric cardia cancer, heart disease, stroke, and total death. Am J Clin Nutr 2004; 79(1):80–85.

25.  Yang J, Huang K, Qin S, Wu X, Zhao Z, and Chen F. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci 2009; 54(2):246–254.

26.  Holt JG, Bergey, DH and Krieg, NR Bergey’s Manual of Systematic BacteriologyWilliams and Wilkins, Baltimore, USA 1984; 2:1015-1019. 

27.  Freeman DJ, Falkiner FR, and Keane CT, New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42:872–874.

28.  Christensen GD, Simpson WA, Bisno AL, and Beachey EH, Adherence of slime producing strains of Staphylococcus epidermidis to smooth surfaces,  Infect Immun 1982; 37: 318-326.

29.  Kim L, Riddle of biofilm resistance. Antimicrobial agents and chemotherapy 2001; 45(4): 999-1007.

30.  Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A, Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 2006; 24(1):25-29.

31.  Sileikaite A, Puiso J, and Prosycevas I. Investigation of Silver Nanoparticles Formation Kinetics during Reduction of Silver Nitrate with Sodium Citrate. Materials Science 2009; 15(1):21-27.

32.  Tran PA and Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine 2011; 6:1553–1558.

33.  Moskowitz SM, Foster JM, and Emerson J, Burns JL. Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 2004; 42:1915-1922.

34.  Kayastha BB, Manandhar S, and Shrestha B. Methicillin resistant Staphylococcus aureus (MRSA) in different clinical samples from patients presenting at kathmandu model hospital, 2010.

35.  Yasmeen F, Sarwar MI, Hakeem A, Sherwani SK, Hussain MS, Zeb M, Sarwar I, and Khan MM. Identification of Staphylococcus aureus in Pus samples and its Anti-microbial Susceptibility against Imipenem, Tobramycin and Linezolid. International Journal of Basic Medical Sciences and Pharmacy (IJBMSP) 2014; 4(1):9-12.

36.  Mishra M, Banjare S, Thaware PP, Mishra P, and Farooq U. To study the Prevalence and Antibiotic Sensitivity Pattern of Isolated Bacteria from the Blood, Urine, CSF and Pus Samples in a Tertiary Care Teaching Hospital. International Archives of biomedical and Clinical Research 2016; 2(1):18-22.

37.  Kshetry AO, Pant ND, Bhandari R, Khatri S, Shrestha KL, Upadhaya SK, Poudel A, Lekhak B, and Raghubanshi BR. Minimum inhibitory concentration of vancomycin to methicillin resistant Staphylococcus aureus isolated from different clinical samples at a tertiary care hospital in Nepal. Antimicrobial Resistance and Infection Control, 2016; 5(27):1-6.

38.  Olowe O.A., Eniola K.I.T., Olowe R.A., and Olayemi A.B. Antimicrobial Susceptibility and Beta-lactamase detection of MRSA in Osogbo. SW Nigeria.  Nature and Science 2007; 5(3):44-48.

39.  Basak S, Mallick Sk, and Bose S. Community Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA)- An Emerging Pathogen: Are We Aware?. Journal of Clinical and Diagnostic Research 2010; (4):2111-2115.

40.  Fahriye Eksi, Efgan Dogan Gayyurhan, Aysen Bayram, and Tekin Karsligil. Determination of antimicrobial susceptibility patterns and inducible clindamycin resistance in Staphylococcus aureus strains recovered from southeastern Turkey. Journal of Microbiology, Immunology and Infection 2011; pp:1-6,.

41.  Pereira EM, Schuenck RP, Malvar KL, Iorio NL, Matos PD, Olendzki AN, Oelemann WM, and Dossantos KR. Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus haemolyticus: Methicillin-resistant isolates are detected directly in blood cultures by multiplex PCR. Microbiological Research 2010; 165:243-249.

42.  Bose S, Khodke M, Basak S, and Mallick SK. Detection of Biofilm Producing Staphylococci: Need of The Hour. Journal of Clinical and Diagnostic Research 2009; 3:1915-1920.

43.  Khan F, Shukla I, Rizvi M, Mansoor T, and Sharma SC. Detection of Biofilm Formation in Staphylococcus aureus. Doe have a Role in Treatment of MRSA Infections? , Trends in Medical Research 2011; 6 (2):116-123.

44.  Hassan A, Usman J, Kaleem F, Omair M, Khalid A, and Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates 2011; 305-311.

45.  Taj Y, Essa F, Aziz F, and Kazmi SU Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Infect Dev Ctries 2012; 5(6):403-409.

Corresponding Author

Ms. Poonam Verma

Research Scholar, School of Biotechnology

IFTM University, Moradabad, India

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.