Title: Reorganisations of the Visual and Auditory Cortex for Auditory Processing in Congenitally Blind Individuals

Authors: Manjula P*, Bharath T

 DOI:  http://dx.doi.org/10.18535/jmscr/v3i8.47

DIDS : 08.2015-XXXXXXXX

Abstract

Background and objective: We assessed whether individuals with total blindness are compensated for the loss of their visual neuronal circuitry by augmentation in the auditory and tactile perception by comparing the P300 components of the auditory evoked potentials in the Individuals with total blindness and normal vision.

Methods: Twenty individuals each with total blindness or normal vision were recruited for this study. P300 components of the auditory evoked potentials were recorded. Latency and amplitude of the waveforms were measured and analyzed.

Results: The latencies of all the waveforms were significantly reduced in the subjects with total blindness when compared to the subjects with normal vision. In contrast the amplitude of the waveform P300 at Oz site was significantly increased in the subjects with total blindness.

Conclusion: Our study suggests that individuals with total blindness demonstrate remarkable neuroplasticity with neurophysiological evidence of much better information processing in the auditory system with the visual cortex additionally participating in hearing process.

Keywords: Total blindness, auditory evoked potentials, P300, neuroplastic changes, Plasticity.

References

1.             Roder B, Teder-Salejarvi W, Sterr A, Rosler F, Hillyard SA, Neville HJ. Improved auditory spatial tuning in blind humans. Nature 1999a Jul 8; 400(6740):162-6. 

2.             Lessard N, Paré M, Lepore F, Lassonde M. Early-blind human subjects localize sound    sources better than sighted subjects. Nature 1998; 395:278-280.

3.             Thomas Elbert, Annette Sterr, Brigitte Rockstroh, Christo Pantev, Matthias M, Muller    et al. Expansion of the tonotopic area in the auditory cortex of blind. J Neurosci 2002 November 15; 22(22):9941 – 9944.

4.             Hamilton RH, Pascual-Leone A, Rodriguez D, Schlaug G. Increased prevalence of    absolute pitch in blind musicians. Abstr Soc Neurosci 2000; 26:739.13.

5.             Yabe, Takao CA, Kaga, Kimitaka. Sound lateralization test in adolescent blind    individuals.Neuroreport 2005 June; 16(9):939-942.

6.             Daphane Bavelier, Helen J. Neville. Cross-modal plasticity: Where and How? Nature    Reviews, Neuroscience 2002 June; 443-452.

7.             Liotti, Mario, Ryder, Kathy, Woldorff, Marty G. Auditory attention in the congenitally blind: where, when and what gets reorganized? Cognitive Neuroscience and Neuropsychology.Neuroreport: 20 April 1998 - Volume 9 - Issue 6 - p 1007-1012.

8.             Kujala T, Huotilainen M, Snikkonen J, Ahonen AI, Alho K, Ha¨ma¨la¨inen MS, Ilmoniemi RJ, Kajola M, Knuutila JET, Lavikainen J, Salonen O,Simola J, Standertskjo¨ld-Nordenstam CG, Na¨a¨ta¨ nen R .Visual cortex activation in blind humans during sound discrimination. Neuroscience Lett (1995a); 183:143–146.

9.             Kujala T, Alho K, Kekoni J, Ha¨ma¨la¨inen MS, Reinikainen K, Salonen O, Standertskjo¨ld-Nordenstam CG, Na¨a¨t a¨nen R .Auditory and somatosensory event-related brain potentials in early blind humans. Exp Brain Res(1995b) ; 104:519–526.

10.         Naveen KV, Srinivasa RS, Nirmala KS, Nagendra HR, Telles S. Middle latency auditory evoked potentials in congenitally blind and normal sighted subjects. Int JNeurosci. 1997; 90(1-2):105-11.

11.         Chiappa KH. Evoked Potentials in Clinical Medicine. 2nd Ed. New York: Raven Press; 371-473; 1990.

12.         Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci 2002; 3: 443–452).

13.         Niemeyer W, Starlinger I (1981) Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. II. Central functions. Audiology 20:510–515.

14.         Stevens AA, Weaver K. Auditory perceptual consolidation in early-onset blindness. Neuropsychologia.2005; 43:1901–1910.

15.         Fatemeh Heidari, Saeed Farahani, Ghassem Mohammad khani, Ebrahim Jafarzadepour, Shohre Jalaie. Comparison of auditory event-related potential P300 in sighted and early blind individuals.Audiol. 2009; 18(1-2):81-87.

16.         Budinger E, Scheich H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus), IV: Connections with anatomically characterized subcortical structures. Eur. J. Neurosci., Oxford, v. 12, n. 7, p. 2452-2474, jul. 2000. 

17.         Picton TW. The P300 wave of the human event-related potential. Clin. Neurophysiol., v. 9, n. 1, p. 456-479, Jan. 1992. 

18.         Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased use of the left hand in string players associated with increased cortical representation of the fingers. Science 1995; 270:305-307.

19.         Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E. Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosci 1998b; 18:4417-4423.

20.         Jonathan S. Bakin, David A. South, and Norman M. Weinberger. Induction of Receptive Field Plasticity in the Auditory Cortex of the Guinea Pig during Instrumental Avoidance Conditioning. Behavioral Neuroscience 1996; Vol. ll0, No. 5,905-913.

21.         Recanzone GH, Schreiner CE and Merzenich MM. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience1993; Vol 13, 87-103.

22.         Ohl FW and Scheich H. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex of the alert Mongolian gerbil. Eur. J.Neurosci1996, 8: 1001–1017.

23.         Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG et al. A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 2000; 20:2664-2672.

24.         Alho K, Kujala T, Paavilainen P, Summala H & Naatanen R"Auditory processing n visual brain area of the early blind; evidence from event-related potentials”. Electroence-phalography and Clinical Neurophysiology (1993); 86: 418-427.

25.         Bakin JS, Weinberger NM.Classical conditioning induces specific receptive field plasticity in the auditory cortex of the guinea pig.Brain Res1990: 536:271–286.

26.         Cohen LG, Celnick P, Pascual-Leone A, Corwell B, Faiz L, Dambrosia J et al. Functional relevance of cross-model plasticity in blind humans. Nature 1997; 389:180-183   40.

27.         Luiz Antonio De Lima Resende, Maria Dorvalina Silva, Fabiola Impemba, Nidia     Borges Achoa, Arthur Oscar Schelp. Multimodal evoked potentials and the ovarian     cycle in young ovulating women. Arg. Neuropsiquiatr 2000 June; 58(2B):418-23.

28.         Merzenich MN, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM et al.  Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol 1984; 224, 591 – 605.

29.         Norihiro Sadato, Tomohisa Okada, Manabu Honda, Yoshiharu Yonekura.Critical Period for Cross-Modal Plasticity in Blind Humans:A  Functional MRI Study. NeuroImage 2002; 16, 389–400.

30.         Bavelier D, Neville HJ. Cross-modal plasticity: where and how? Nat Rev Neurosci 2002; 3: 443–452).

31.         Venkataswamy Reddy M (2002), Statistics for Mental Health Care Research, NIMHANS publication, INDIA, page 108-144.

Corresponding Author

Manjula P

Assistant Professor, Department of Physiology

VIMS, Ballari- 583104, Karnataka, INDIA

Email:  This email address is being protected from spambots. You need JavaScript enabled to view it.