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Abstract 

This paper presents a combined Fast Gradient Projection Method with Gabor filter technique for removing 

the Rician noise present in MR images using general purpose Graphics Processing Units (GPUs) and 

MATLAB. In this work, the capability of GPUs such as processing tens of thousands of threads in parallel on 

the array of computing units were utilized to implement the various functions involved in the Rician noise 

removal algorithms in order to achieve higher computing speed required for real-time implementation. In the 

proposed method, the Gradient projection filter was employed to denoise and to identify the artifacts in the 

MR images. For estimating the performance of the proposed method, Rician noise of different levels were 

added to brain MR images and tested in the proposed algorithm. The results of this study reveal that the 

proposed method removes the Rician noise without affecting the diagnostic details. This is further supported 

through visual inspection as well as estimated performance metrics. 
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1. Introduction 

Many image processing applications involve complex algorithms which utilize parallel computing platform 

like graphical processor unit (GPU) due to its high memory bandwidth and high-speed computing capability 

in implementing the various number-crunching image processing operations
[1]

. For implementing the 

algorithms in the GPU, several dedicated software tools are available, which require a thorough 

understanding of the GPU hardware details and application program concepts in addition to good 

programming skills. But, MATLAB is a versatile platform for implementing several complex operations 

very easily using the built-in signal and image processing toolkits. In this work, we implemented fast 

gradient projection algorithm for the removal of Rician noise present in magnetic resonance (MR) images. 

Most of the real-time image processing techniques require high complex processing algorithms that can be 

implemented using parallel computing techniques in GPU platform, since GPU is a single processor with 

built-in multi-processor blocks that can be used effectively in a parallel fashion in order to execute multiple 

tasks in real-time than the other processor hardware platforms. 
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The rest of this paper is organized as follows: In Section 2, we briefly review the functionality and 

applications of the Graphics Processor Unit. Section 3 presents the basics of the MR Images and the 

overview of Rician noise present in MR images. The basic and mathematical concepts of Gradient 

projection method and related algorithms are explained in Section 4. In Section 5, we discuss the basics of 

Gabor filter and its functional parameters. Section 6 briefly describes the various quality measures and 

materials employed in this work. The results and the concluding remarks of this study are given in Sections 

7 and 8, respectively.  

 

2. Graphics Processor Unit 

GPU is a hardware equipped with tremendous computational horsepower and high memory bandwidth, 

which can bring tremendous improvements in pixel processing, graphics design applications and image 

operations interms of speed and number crunching operations. It is also called Visual Processing Unit (VPU) 

of a Graphics Card or Graphics Accelerator. To handle independent graphics blocks and to transfer a section 

of core memory to the video memory, the GPUs are used in the early computer hardware as well as video 

display units. But, the modern GPU provides fast and efficient calculation of 3D computer graphics using 

transistors and supports programmable shaders, over-sampling and very high precision color formats. On the 

other hand, the General Purpose GPUs (GPGPUs) are the new generation of GPUs that are aiming at 

handling more general, complex, and intensive processing. With the advancements in GPU, several general 

and specific applications with high data parallelism can be implemented efficiently, since GPGPU supports 

parallel data processing using large number of processing units integrated within the GPU. Further, it 

supports single-instruction multiple-date (SIMD) or single-program multiple-data (SPMD) access as well as 

arithmetic, loading and interpolations units for data pre-processing in addition to the evaluation units for 

basic functions. The potentiality of GPUs is well documented and is reviewed here. A multidisplinary group 

discussed the various issues in parallel computing and its device level applications like GPGPU 
[2]

. The 

potentiality of GPU in diversified applications like simple image processing simulations and morphological 

edge detection were demonstrated in terms of flexibility and time efficiency 
[3]

.  

Din 
[4]

 implemented the computationally intensive Haralick features and fractal geometry for efficient 

classification of medical images by harnessing the power of GPU in optimizing the speed and efficiency of 

texture and fractal analysis using MATLAB. Aldinucci et al.
[5]

 developed two-phase filter algorithm 

comprising of an adaptive median filter and a regularization method for removing the salt and pepper noise 

using fast-flow library of the multi-core GPGPUs that achieves both close-to-ideal speedup and very good 

wall-clock execution results. Mukherjeet et al.
[6]

 developed 3D computed tomography reconstruction 

algorithm in CUDA-C and OpenCL using CPU in the GPU platform and compared the performance of the 

algorithm developed using C in the general purpose CPU platform. Pryor et al.
[7]

 analysed the capabilities 

and applications of GPU in MATLAB and C/C++ environment using Jacket.  Nagest et al.
[8]

 studied the 

parallel processing capabilities of GPU in a computer vision problem and provided the details of the system 

level design, memory management and implementation stratergies in CUDA environment. Patel
[9]

 

demonstrated the power of GPU for real-time image processing application by processing the polarimetric 

image data in 30 seconds per frame in MATLAB was reduced to 50 ms in CUDA. Torres and Reyes 
[10] 

attempted to improve the speed of HIAT (Hyperspectral Image Analysis Toolbox) of MATLAB by using 

GPU with Jacket Toolbox of MATLAB and achieved a speedup of 4 to 12 times for various hyperspectral 

imaging algorithms.  
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3. Magnetic Resonance Image  

The magnetic resonance (MR) data are acquired in the form of complex valued data composed of signal and 

noise in the K-space. In the formation of an image, the distribution of MR data is transformed from Gaussian 

to Rician because these data are converted into a magnitude image by taking the square root of the sum of 

the squares of the real and the imaginary part of the complex data in a pixel-wise manner 
[11]

. These 

magnitude images have various artifacts due to tangled MRI image formation, such as system delay, angle 

inhomogeneity, non-centered sampling windows, phase variations, eddy current, pulse timing error, coil 

impedance changes, etc., that affect the image formation using the complex MR data 
[12]

. As a result, the 

error between the original image and the processed image induces the Rician noise in magnitude MR image. 

Signal-to-noise ratio (SNR) decreases and reduces the image contrast when there is an increase in Rician 

noise 
[13]

. Many research papers have been reported about the origin and removal strategies of Rician noise 

in MR images. Nowak 
[14]

 studied the wavelet-domain filtering to remove Rician noise by taking into 

account of variations in both the signal and the noise. Aelterman et al. 
[15]

 used squared and square root of 

the magnitude for denoising and combined bias removal in wavelet domain, which increases the contrast and 

PSNR value of the image.  

 

3.1 Rician noise in MRI 

Rice conducted a through discussion on the statistics of random noise and found out that the Rician PDF 

mainly depends on ths signal-to-noise ratio (SNR) of the signal of interest 
[16]

. Marzetta 
[17]

 applied an 

expectation-maximization (EM) algorithm to SAR images that provide a complete iterative solution to the 

Rician parameter estimation problem.   

The moments of Rician PDF can be expressed using Eq. (1). 

 2 / 2 2 2

1 1( ) (2 ) 1 / 2 ( / 2; 1; / 2 )E m F A                            (1) 

The odd moments are complex and even moments (i.e., when v  is even) are simple polynomials in Rician 

distribution. However, the function given in Eq. (1) is explained in terms of modified Bessel functions, 

which can be derived from the analytical expression for the odd moments 
[14]

. In addition to this, Koay and 

Basser 
[18]

 extracted signal intensity and noise variance from the magnitude MR signal using several 

correction schemes.   

Let the phase image of the MR signal be A , and 2 be the variance of each Gaussian noise. The probability 

distribution ( , ; , )P a b A   of pixel intensities is given by the Eqs. (2), (3), and (4). 

 ( , ; , ) ( ; , ) ( ; , )P a b A P a A P b A               (2) 

 2 2 2 1/ 2( ; , ) exp ( ) / 2 / (2 )P a A a A                                     (3) 

2 2 2 1/ 2( ; , ) exp( / 2 ) / (2 )P b A b                                                      (4) 

It can be derived in terms of the polar coordinates cos , sin .a M b M     Further, the Rician distribution is 

calculated by multiplying ( , ; , )P a b A  with the Jacobian determinant  ( , ) / ( , )M a b M    and integrating over 

the angular variable  as given in Eq. (5).  

  

2 2 2 2 2( ; , ) exp{ ( ) / 2 } ( / )P M A M M A I MA                  (5) 

where I  is the zero-order Bessel function [12].  The asymptotic expansion of I  for large values of its 

arguments  is given in Eq. (6).   

 1/ 2 2 2 2 1/ 2( ; , ) ( / ) exp{ ( ) / 2 }/(2 ) , /P M A M A M A A large                           (6) 

Edelstein et al. [19] measured the SNR using  the projection method in an NMR imaging system based on a 

calibration procedure. They assumed that the measure of the gradient strength is the length of the projection 

given by Eq. (7). 
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              2 /pG N f L                        (7) 

where  G
 
is  the  gradient strength  in  / ,T m   is the gyromagnetic ratio, and

 pN is the number of points in 

projection. The SNR value is measured by estimating the standard deviation of the points along the 

projection and averaging the NMR projection amplitude. Thus, the signal and noise depend on the square 

root of the bandwidth of each pixel and volume of the target, respectively.  

 

4. Gradient Projection Method 

Bound constrained optimization problems are solved using Gradient Projection (GP) methods.  In non-linear 

programming when constraint functions are linear GP methods are applied. GP method was first introduced 

by Goldstein 
[20]

 and Lewtin & Polyak 
[21]

 for resolving convexly constrained minimization problems and 

regarded as an extension of the steepest descent or Cauchy algorithm for solving unconstrained optimization 

problems. The search is made along the resulting curve obtained from boundary region obtained by 

projecting the negative Gradient. In the solution of bound constrained optimization problems, the drawback 

of the active set methods is that  the working set changes slowly; at the most one constraint is added, to or 

dropped from the working set at each iteration.  At each iteration, the gradient-projection algorithm (GPA), 

the prototypical method, permits large changes in the working set.  Upon correct implementation, GPA 

identifies the active set at a solution in a finite number of iterations. After the identification of the correct 

active set, the GPA reduces the steepest-descent algorithm on the subspace of free variables. As a result, this 

method is invariably used in conjunction with other methods for faster rates of convergence 
[22]

. The first 

results towards the conditions which guarantees GP method identifies the optimal active set in a finite no. of 

iterations for bound constrained problem was obtained by Bertsekas 
[23]

. Later in 1982, Bertsekas derived 

some results for a projected Newton Method 
[24]

 and Gafini and Bertsekas for a 2-metric projection method 
[25]

. A statement stating that if a strict complementary condition holds, then the GPA identifies the optimal 

active constraints in a finite no. of iterations was proved by Dunn 
[26]

. The above statement was extended by 

Burke and More, particularly they proves that under Dunn’s non-degeneracy assumption the optimal active 

constraints are eventually identified if and only if the projected gradient converges to 0 
[27]

. The converging 

properties of GP were studied by Calamai and More, and the results were applied for linearly constrained 

problems 
[28]

. Basically in infinite-dimensional Hilbert spaces GPA has weak Convergence, so an operator 

oriented averaged mapping approach for providing strong convergence for GPA was provided by Hong-Kun 

xu 
[29]

. Based on the penalty function approach and GPA, Luenberger proposed a new programming 

algorithm for non-linear constrained optimization 
[30]

. For a class of stochastic optimal control problems, a 

simple and effective GPA was stated by Ning Du et al. and its convergence properties were also discussed 

with extensive numerical tests 
[31]

. A new solution for Side–Constrained Traffic Assignment Problem 

(SCTAP) was solved using a combination method based on the inner penalty function and path-based 

adaptation of the GPA 
[32]

. A method for solving quadratic programming reformulation of a class of convex 

non smooth unconstrained optimization problems using GPA was experimentally elaborated by Fiegueiredo 

and Nowak in 
[33]

. In 
[34]

 Farag investigated the convergence of the GPA by solving some optimal control 

problems of parabolic equations. For problems having starting guess far from the solution, a piece-wise 

smooth projection method associated with constrained set defined by bounds on variables and a single linear 

equation was evaluated by Hager and Park 
[35]

.  

The Armijo rule along the projection arc and its convergence behavior was studied by Bertsekes 
[36]

. 

Chambolle made a key breakthrough by proposing a fixed point algorithm and a gradient projection method 

with constant step size based on the dual formulation of total variation 
[37,38]

. In addition to the above 

Gradient Projection method is also used for handling image restoration problem like Graph cut methods 
[38]

 

and the Split Bregman Method 
[20]

.  
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4.1 Algorithm for Gradient Projection: 

Considering the problem for minimizing continuously differentiable mapping :
n

f  on C, a nonempty 

closed convex set of n , the constrained minimization problem is described as equation (8). 

         min ( )f x
x C

      (8) 

where the object function ( )f x  is a composite type convex function denoted by equation (9) 

     ( ) ( ) ( )f x F x G x                                 (9) 

In (9) ( )F x  is the smooth convex function and ( )G x  is the continuous non-smooth convex function. To solve 

the minimization problem given in Eq. (8), the GP algorithm is used. It generates a sequence of { }kx  through 

the recursion as in Eq. (10). 

       1 1( ( )), 1 .ck k k kx P x f x k     
       (10) 

In Eq. (10) the initial guess is chosen arbitrarily as 0
x C and 

k
  is a sequence of step sizes with 

1
0

k



  for 

each 0k  . 
c

P  is the orthogonal projection operator on the set C  
[39]

. By applying a special case of backward-

forward splitting method 
[40]

, the basic Gradient-based model can be written as Eq. (11): 

             
2

1 1 1arg min{ ( ) (1/ 2 ) ( ( )) }k k k k k
x

x G x x x f x                         (11) 

The discrete penalized version of the TV based de-blurring model consists of solving an unconstrained 

convex minimization problem of the form stated in Eq. (12). 

    

2
min 2

F TVx
x b x 

         (12) 

where b is the observed noisy data. x is the desired unknown image to be recovered and  is the 

regularization parameter with 0  .  

Let us consider
,l uC B , then

,
.

l uc BP P  Thus GPA can be described in a matrix form as shown in Eq. (13). 

 
,

( )
l u

ij

B ij ij ij

ij

l x l

P x x l x u

u x u

 


  




                                                 (13) 

where l is the vector of lower bounds, u is the vector of upper bounds.  If ( , ) ,p q P then the optimal solution 

of the dual problem with TV based de-noising is given by 

 
( , )
min { ( , ) (c
p q P

h p q H b 


   Ը
2

( , )
F

p q b   Ը
2

( , ) }
F

p q     (14)  

Here                                            ( )c cH x P x   for every *m nx                              (15) 

When TV=TV1, the solution of  Eq. (14) is given by  

 (cx P b   Ը ( , ))p q                                             (16) 

The objective function h of Eq. (14) is continuously differentiable and its gradient is given by 

 ( , ) 2h p q    Ը (T

cP b  Ը ( , ))p q     (17) 

 1 1( , ) [( , ) (1/ 8 )k k p k kp q P p q     Ը ( [T

cP b  Ը ( , )])]k kp q    (18) 
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The optimal solution of the Eq. (14) is given as *x  

 * [cx P b   Ը ( , )]k kp q   (19) 

where
pP is the projection operator which maps a matrix pair ( , )p q with another matrix pair ( , ) ( , )pr s P p q and 

can be readily implemented 
[41]

. 

4.2 Algorithm for Fast Gradient Projection 

For a better rate of convergence, the Fast Gradient Projection (FGP) method is used on the dual problem 

stated in Eq. (14). Considering,
1 1 0 0( , ) ( , )r s p q at step 0, and k at step ,k  the Eq. (14) can be denoted as Eq. 

(20, 21). 

 
1 1 1 1( , ) [( , ) (1/ 8 )k k p k kp q P r s      Ը ( [T

cP b  Ը
1 1( , )])]k kr s 

  (20) 

 2

2 1{1 1 4 }/ 2k k      (21) 

 
2 2 1 1 1 2 1 1( , ) ( , ) [( 1) / ]( , )k k k k k k k k k kr s p q p p q q               (22) 

5. Total Variation Method 

Total variation (TV) is an efficient algorithm for regularizing the images without smoothing the boundaries 

of the objects. TV was originally developed by Rudin, Osher and Fatemi (ROF) for solving inverse 

problems in intensity images, later it was extended to color images by Blomgren and Chan 
[42]

. The key idea 

behind this method is that the integral of the absolute Gradient of the image is high when it has unwanted 

noise. Basically, the TV of an image gives the change between the pixel values of the image 
[43]

.  Let the 

image acquisition system have the formation as given in Eq. (23). 

 ( * )z h v n     (23) 

In Eq. (23), v  denotes the ideal undistorted image, h  is the blurring kernel introduced to restore blurred and 

noisy image and z  is the observed image. ,n is the additive Guassian noise with standard deviation .  Rudin-

Osher-Fatemi 
[44]

 proposed a solution for solving the constrained minimization problem stated in Eq. (24).  

 
2 2

min

. * ( ) ( )

Dv

s t h v x z x dx 





  




  (24) 

The problem of de-noising an image contains the case where ,h   so the Eq. (23) is written as .z u n   Thus 

the unconstrained variational formulation with above condition is given as Eq. (25). The variation of the 

additive Guassian white noise of zero mean and variance is 2  
[45]

. 

 min{ ( )} ( , ) (1/ 2 )
u

E v v x y d z v d
 

          (25) 

The TV is obtained using the gradient-descent method. 

 2 2 2 2 3/2

0/ [( ) / ( ) ] 2 ( )xx y x y xy yy x x yv t v v v v v v v v v x v v                 (26) 

In the TV method, the minimized energy functional measures the variation in the image. 
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6. Gabor Filter 

A Gabor filter [47,48] is a multi-resolution filter having responses similar to those of the human visual 

cortex 
[46].

  Some Gabor filter applications in MR Images were studied in 
[49-51]

. A Gabor filter can be viewed 

as a sinusoidal plane of particular frequency and orientation, modulated by a Gaussian envelope 
[52]

.  The 

filter can be represented in a complex form as in Eq. (27) 

 2 2 2 2( , , , , , , ) exp[ ( ' ' ) / 2 ]exp{ (2 ( '/ ) )}g u v u v i u                (27) 

where ' cos sinu u v   and ' sin cos .v u v     The wavelength of the sinusoidal factor is represented by ,

the orientation of normal to parallel strips is .  is the phase off-set and ,    represent the sigma of Gaussian 

envelope and spatial aspect ratio respectively. For efficient noise removal in MR images, the parameters

, , ,    and of Gabor filter have been assigned to  be some optimum values. The orientation angle

[0,2 ].   In our work we have chosen 0.25, 0.5, (0, / 2), 1        and 0.   

7. Tools and Data 

The filtering algorithms were developed in MATLAB 2011b installed in an Intel® Xeon ® W3565 @ 3.19 

GHz processor PC with Windows 7 professional operating system (Model–HP Z400 Workstation). All the 

algorithms developed are tested on various MR images obtained in the DICOM file format. The details of 

GPUs and MR brain images are given in Table 1.  

 

Table 1. Detailed specifications of the GPU and the MR brain images used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Results and Discussions  

The algorithm was tested on more than 100 MR images. To study the performance of the filters in removing 

the Rician noise,  two different MR images (the raw MR image (RNoisy) with the actual Rician noise 

present and the raw MR image 0126049D added with Rician noise of 0.1 and 0.15 levels) were tested on the 

filtering algorithms, viz., Gradient projection combined with Gabor filter (G+GP), Fast Gradient projection 

combined with Gabor filter (G+FGP), Total variation filter (TV1) and Total variation filter with two 

iterations (TV2). Further, the performance of the filters was studied by estimating the quality metrics such as 

PSNR, MSSIM, CNR, NAE (Normalized Absolute Error), NCC (Normalized Cross Correlation), IQI 

Specifications of GPU Specifications of MR image 

Package parallel.gpu Scan option PFP/SART1 

Name 'Quadro 600' MR Acquisition type 3D 

Index 1 Reception time 24 ms  

Compute capability 2.1 Echo time 7 ms  

Supports double 1 Imaging frequency 63.6777 MHz 

Driver version 5.5000 Field of view 175 220  

Max Grid Size [65535 65535] 
Magnetic field 

intensity 
0.15 T 

SIMD Width 32 Image format DICOM 

Total Memory 1.0737 009e  
Manufacturer 

Siemens Esaote ARTO 

scan C Multiprocessor Count 2 
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(Image Quality Index), and VOI (Variation of Information) of the raw and Rician noise added and their 

corresponding filtered images.  

The MR image (RNoisy) with inherent Rician noise present during acquisition of the image from the 

equipment and their corresponding filtered images are shown in Fig. 1. The raw MR image 0126049D added 

with two different levels (0.1 and 0.15) of Rician noise and its corresponding filtered images are given in 

Figs. 3 and 5.  The quality metrics, estimated for all these images are given in Tables 2, 3 and 4. and their 

respective histogram charts are given in the Figs. 2, 4 and 6, respectively.  

From the visual inspection of the MR images by the trained radiologists and the estimated quality metrics 

arrived out of this study, the following inferences are summarized. 

1. The PSNR values estimated from the results of the Gabor with Fast Gradient projection (G+FGP) 

algorithm exhibit higher values than the other filtering methods, which clearly indicates  that the 

Rician noise is removed effectively.  

2. The MSSIM value of the proposed G+FGP method was found to be less, which showed that the 

G+FGP method reduces the noise structure appreciably, while maintaining the homogeneity of the 

image intact.  

3. The CNR value of the proposed G+FGP filtering method is found to be higher, that exhibits the 

improvements in the contrast of the image while reduceing the noise. 

4. Similarly, the variation of information (VOI)  of the proposed G+FGP method is found to be higher 

due to efficient reduction of noise information. 

5. The visual inspection of the images by the trained radiologists conforms that the G+FGP method 

exhibits better smoothing, more homogeneity, and contrast improvements over the other filtering 

methods.   

6. The GPUs having compute capability (CC) above 1.3 only can perform external programs. 

Therefore, the proposed algorithm can easily be utilized the benefits of GPGPU (QUADRO 600, 

CC- 2.1) with very little change in their MATLAB code that accelerates the programs execution 

speed. 

As a result, from the quality metrics and the visual inspection of the filtered images, it is concluded that the 

G+FGP is the efficient and optimum method in reducing the Rician noise over the G+GP and total variance 

(TV1 and TV2) methods. Hence the G+FGP method is suggested as the best choice for removing the Rician 

noise in MR images.  
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Fig. 1. Raw and filtered RNoisy MR images 

 

Table 2. Estimated Quality Metrics for MR image of RNoisy 

Filters / 

Parameters 
G+GP G+FGP TV1 TV2 

PSNR 65.7423 65.7445 58.5045 59.5793 

MSE 0.0173 0.0173 
9.1756e-

004 

7.1639e-

004 

NAE 0.3818 0.3818 0.1042 0.0890 

NCC 0.6227 0.6227 1.0118 1.0109 

IQI 0.2215 0.2265 0.7188 0.7962 

VOI 0.0850 0.0861 0.0080 0.0080 

MSSI 0.9976 0.9976 1.0000 1.0000 

CNR 11.2045 11.1976 0.1306 0.1055 
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Fig. 2. Histogram plots of the different quality metrics calculated from the filtered RNoisy MR image 

 

 
Fig. 3. Raw MR image (0126049D) corrupted with Rician noise level of 0.1 and its corresponding filtered 

images 

 

Table 3.  Estimated Quality metrics of MR image (0126049D) corrupted with Rician noise level 0.1  

Filters / Parameters G+GP G+FGP TV1 TV2 

PSNR 62.8606 62.8628 60.9490 61.4512 

MSE 0.0337 0.0336 0.0523 0.0466 

NAE 0.3887 0.3886 0.5198 0.4440 

NCC 0.6450 0.6450 0.7693 0.7921 

IQI 0.3440 0.3450 0.6542 0.6802 

VOI 0.8731 0.8727 0.6464 0.6104 

MSSI 0.9958 0.9958 0.9969 0.9974 

CNR 1.4143 1.4149 0.1430 0.1198 

 

0,9976 

0,9976 

1 1 

0,996 

0,997 
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0,999 

1 

1,001 
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Fig. 4. Histogram plots of the estimated quality metrics of the MR image (0126049D) corrupted with  Rician 

noise level 0.1 

 
Fig. 5. Raw MR image (0126049D) corrupted with Rician noise level of 0.15 and its corresponding filtered 

images 
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Table 4. Estimated Quality metrics of MR image (0126049D) corrupted with Rician noise level 0.15 

Filters / Parameters G+GP G+FGP TV1 TV2 

PSNR 61.7581 61.7717 59.9167 60.2881 

MSE 0.0434 0.0432 0.0663 0.0609 

NAE 0.3867 0.3863 0.5897 0.5218 

NCC 0.6478 0.6481 0.7448 0.7644 

IQI 0.4248 0.4301 0.4934 0.5179 

VOI 0.9246 0.9212 0.7616 0.7326 

MSSI 0.9948 0.9948 0.9960 0.9966 

CNR 1.9258 1.9295 0.1654 0.1448 

 

 

   
 

      
Fig. 6. Histogram plots of the estimated quality metrics of the MR image (0126049D) corrupted with  Rician 

noise level 0.15 

 

9. Conclusion 
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qualitatively as well as by visual inspection. The results showed that the G+FGP removes the signal 

dependent bias effectively, which is evident from the increase in peak signal to noise ratio values. Also, the 

G+FGP method improved the contrast of the image, which is very much useful in the diagnosis of tissue 

characterization. In the future scope of this study, all these techniques will be implemented in the GPUs with 

a parallel processing algorithm for an efficient time reducing process. 
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