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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by dopamine deficiency and loss 

of neurons in the SubstantiaNigra (SN) of brain. The deficiency of dopamine, thereafter, presents in the 

form of a number of motor and non-motor deficiencies and complications. Our understanding about PD 

is still evolving and treatments available for this disease are still quite basic. Therefore, better 

understanding of the pathological events linked with this disease may help us devise better treatment 

protocols of the disease.  

Increased production of reactive oxygen species (ROS), oxidative stress, seems to be the centerpiece of 

PD pathology. Increased oxidative stress in PD is mainly the result of by-products generated from 

dopamine metabolism, mitochondrial dysfunction, and inadequate activity of the brain’s antioxidant 

system. Once generated, ROS cause damage to the brain due to its high unsaturated fatty acid content, 

which makes it quite sensitive to oxidative injury.  

In our daily life we’re exposed to different metals and metals have been long linked as risk factors for PD 

development. Therefore, in this article we’ve considered three important metals (iron, aluminum, and 

copper), most of which we encounter time to time in domestic, occupational and environmental 

standpoints. This review, therefore, is concerned with discussing the role of these metals with increased 

oxidative stress in brain. Moreover, this review will also discuss how this increase in oxidative stress is 

linked to various component of PD pathology.   

 

Introduction 

The history of Parkinson’s disease (PD) datesback 

totwo centuries from now when James Parkinson 

wrote “An essay on the shaking palsy”, in 1817 
(1)

. 

More than 100 years later, dropout of cells in the 

substantianigra (SN) of brain was pointed out to 

be the key lesion in PD and 140 years after the 

initial mention of PD, dopamine was discovered 

as a putative neurotransmitter involved in the 

pathogenesis of this disease 
(2)

. Discovery of 
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dopamine deficiency and success of levodopa 

treatment in improving PD symptoms was 

heralded as a huge success in PD treatment 
(3) (4) (5) 

(6)
. But even today, our understanding about PD is 

still incomplete and the treatment options 

available are only symptomatic. Till date, there is 

no neuro-protective or neuro-regenerative interv-

enetion that has proved to be effective in treating 

PD 
(7) (8)

. Therefore, knowing more about the risk 

factors that increase neuronal breakdown in PD 

may improve our understanding of the disease and 

may help us come up with better treatment 

modalities.  

 

Motor and Non-Motor Manifestations in PD 

PD is a chronic neurodegenerative disorder with 

an array of motor and non-motor symptoms, 

which are believed to be the result of 

dopaminergic neuronal loss 
(8)

. The motor 

manifestations in PD include bradykinesis
(9)

; rest 

tremors 
(10)

; rigidity with postural deformities, 

postural instability, motor blocks (freezing)
(11)

; re-

emergence of primitive reflexes
(12) (13)

; orofacial-

larygenal rigidity and bradykinesia leading to 

sialorrhoea, dysarthria, dysphagia and hypophonia 

(10) (14)
; neuro-ophthalmological deficits including 

decreased rate of eyelids blinking, spasm of 

convergence, reduced tear film, exposure keratitis, 

blephrospasm and impaired vision 
(15)

; and 

respiratory insufficiency 
(16)

. Non-motor 

manifestations of PD include autonomic 

dysfunction with orthostatic hypotension, 

dysfunction of sweating, erectile dysfunction and 

sphincter paralysis 
(17) (18) (19)

; cognitive decline 

(20)
; neurobehavioral abnormalities like apathy, 

depression, anxiety, and even hallucinations 
(21)

; 

sleep disorders 
(22)

 and sensory abnormalities like 

pain
(23)

. There has been much clarity in our 

understanding of underlying causes of nigral cell 

damage. Among the mechanism involved, genetic 

mutations 
(7)

, mitochondrial dysfunction 
(24)

, 

denaturation and aggregation of proteins 
(25)

, 

inflammation 
(26) (27)

, and oxidative stress 
(29)

 seem 

to be the most important mechanisms involved in 

PD pathogenesis.  

 

Role of Oxidative Stress in PD Pathology 

Human brain consumes as much as 20% of body 

oxygen and a lot of this oxygen is converted into 

reactive oxygen species (ROS) 
(28)

. Both neuronal 

and glial cells are responsible for the generation of 

ROS inside the brain and disequilibrium in the 

electron transport chain is the main contributor of 

oxidative stress at the cellular level 
(29)

. As for 

oxidative stress in PD, both increased production 

and impaired clearance of ROS seem to be the 

culprit behind increase in oxidative stress. The 

prime factors contributing to increase ROS 

include dopamine metabolism and mitochondrial 

dysfunction. Whereas, reduced clearance of ROS 

is mainly due to the decrease in the concentration 

of catalase and glutathione peroxidase 
(30)

.  

 

Role of Dopamine  

Dopamine is an unstable neurotransmitter that 

undergoes auto-oxidation- a reaction catalyzed by 

metals, enzymes like tyrosinase and oxygen- to 

form dopamine quinones and free radicals 
(31)

. 

Under normal circumstances, monoamine oxidase 

A (MAO-A), which is largely localized within 



 

Adnan Bashir Bhatti, MD et al JMSCR Volume 03 Issue 05 May  Page 5557 

JMSCR Volume||03||Issue||05||Page 5555-5568||May 2015 

catecholaminergic neurons, metabolizes and 

regulates the levels of dopamine 
(32)

. However, 

with age or neurodegenerative disease like PD, the 

level of MAO-B increases within glial cells and 

this MAO-B becomes the key enzyme 

metabolizing dopamine 
(33) (34)

. The products of 

MAO-B metabolism include an ammonia derivate 

(3, 4-dihydroxyphenyl-acetaldehyde) and 

hydrogen peroxide (H2O2). H2O2, being highly 

permeable, enters the neighboring dopaminergic 

neurons and produces ROS like hydroxyl radicals 

after reacting with cellular Ferrous ions (Fe+2) 
(35) 

(36)
. In addition, dopamine quinones can 

exacerbate neuro-degeneration too
(37)

. The main 

mechanism through which dopamine quinones 

trigger oxidative stress is their cyclization to 

aminochrome, which is a reactive molecules that 

depletes cellular NADPH and initiates the 

production of superoxide ions 
(38)

. Finally, the 

concentration of free dopamine in neuronal 

cytoplasm can also trigger oxidative stress. 

Vesicular monoamine transporter 2 (VMAT2) and 

dopamine transporters (DAT are concerned with 

the sequestration of cellular dopamine within 

storage vesicles and reuptake of dopamine from 

synaptic clefts respectively. Perturbations in the 

functioning of these transporters can increase the 

concentration of free dopamine within cell 

cytoplasm and can cause a resultant increase in 

oxidative stress 
(39) (40). 

 

 

Role of Mitochondrial Dysfunction 

Mitochondrial is a dynamic organelle and controls 

several vital functions. As mentioned before, it 

has been repeatedly reported that dysfunction of 

electron transport chain is the main contributor of 

oxidative stress within cells. Several components 

and processes of electron transport chain like 

complex I, II, III, dehydrogenases in the 

tricarboxylic acid (TCA) and final coupling of 

oxygen with hydrogen ions to form water result in 

the generation of superoxide anions 
(41) (42) (43)

. 

These anions are then turned into H2O2 by the 

action of manganese superoxide dismutase 

(MnSOD) 
(44)

. The role of mitochondria in causing 

oxidative stress was first elucidated when 

Parkinsonism was observed in some 1-methyl-4-

phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) drug 

abusers 
(45)

. MPTP is taken by brain astrocytes 

where it is converted into 1-methyl-4-

phenylpyridinium (MPP+) by the action of MAO-

B. MPP+ is a known inhibitor of complex I of 

electron transport chain. This way it inflicts 

damage to NS dopamine neurons by causing a 

drop in the level of ATP, increased oxidation of 

dopamine and enhanced production of ROS 
(46)

.   

 

Role of Anti-Oxidant System
 

As mentioned former in the text, increased 

oxidative stress in PD is the result of both 

increased production and decreased clearance of 

ROS. Analysis of serum superoxide dismutase 

(SOD) and glutathione peroxidase (GSH) activity 

in controls and patients with PD showed a marked 

elevation in the activity of these anti-oxidant 

enzymes, which further proves the notion that 

increased oxidative stress is the centerpiece of PD 

pathology 
(47)

. Moreover, postmortem analysis of 

brain tissues in patients with PD showed marked 

reduction in the level of GSHin the SN of PD 
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patients when compared to the control 
(48) (49)

. The 

level of catalase was found to have undergone 

significant reduction in patients with PD 
(50)

. 

Similarly, decreased level of other antioxidant like 

GSH peroxidase and ceruloplasmin are also 

observed in patients with PD 
(51) (52)

.  

 

How ROS in PD Damage the Brain? 

Human brain contains abundant polyunsaturated 

acids like arachidonic acid and docosahexaenoic 

acid. These acids are unsaturated and are highly 

susceptible to peroxidation induced by ROS. In 

fact, this is the basic mechanism of ROS induced 

brain injury 
(53)

. Structural damage to the 

membranes caused by lipid peroxidation and 

exaggerated injury induced by lipid oxidation 

production are the further predictors of brain 

injury 
(54) (55)

. One such product of lipid 

peroxidation is 4-Hydroxyl-2-nonenal (HNE). 

HNE is a highly reactive molecule that can inflict 

damage to the cells by denaturing proteins, 

causing a decrease in GSH levels, DNA 

fragmentation and apoptosis triggered by the 

activation of capsases 
(56) (57)

.  The notion that lipid 

peroxidation and damage inflicted by by-products 

of lipid peroxidation might contribute to PD 

progression is supported by several clinical 

studies as well. The results of several studies have 

backed the fat the level of brain unsaturated fatty 

acids decrease, while the level of lipid 

peroxidation products like HNE and 

malondialdehyde increase in the brain substance 

and cerebrospinal fluid of PD patients 
(58) (59) (60)

.  

Since urbanization and industrialization, our day 

to day exposure to metals has increased 

significantly. We are subjected to metals of 

different sorts daily via domestic routes, industries 

and environmental exposure. Metal exposure is a 

known risk factor for PD. Therefore, the purpose 

of this review is to find a link between exposure to 

metals and increased risk of PD. Moreover, this 

review will also shed some light on the underlying 

mechanism of metal induced oxidative stress, 

which maybe the main event responsible for metal 

induced PD.  

 

Discussion 

Exposure to metals is an important risk factor for 

different neurological disorders. The exposure to 

metals can be domestic or occupational. Different 

metals are recognized to cause increased risk of 

neurological disorder by increasing the production 

of ROS 
(61)

. In this review, we’ve discussed 

different metals (Iron, Aluminum and Copper) and 

their role in the pathogenesis of PD (Table 1). 

These metals are of particular interest and are 

discussed here because a lot of household 

appliance, utensils (especially cooking utensils) 

make use of these metals.  

 

Iron 

Among metals that are linked with PD, iron is the 

most important. Postmortem studies of the brain 

tissues in patients with PD showed significant 

increase in the iron content of SN 
(63) (64) (65)

. In the 

normal brain tissues, iron is extensively 

distributed within different areas of basal ganglia 

including globuspallidus, SN and putamen 
(66)

. 

However, this pattern of iron distribution changes 

significantly with increasing age and 
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neurodegenerative disease like PD. In such 

conditions, the levels of iron become abnormally 

high in SN, when compared to other areas of basal 

ganglia 
(67)

.  

Irons seems to influence PD, both by increasing 

oxidative stress and decreasing anti-oxidant 

enzymes. Ferrous (Fe+2) and ferric (Fe+3) forms 

of iron can trigger a chain reaction after 

interacting with superoxide and hydrogen 

peroxide (Fenton’s reaction) respectively. This 

chain reaction results in the formation of highly 

reactive hydroxyl radicals, which can trigger 

neurotoxicity 
(68) (69)

. In addition, iron can increase 

the level of oxidative stress by causing 

mitochondrial dysfunction. Iron seems to increase 

the production of ROS by blocking the activity of 

complex I and complex IV of electron transport 

chain
(70)

. Moreover, excess of iron has been found 

to decrease the level of antioxidant enzymes- 

which is perhaps due to increased oxidative stress- 

especially glutathione 
(71)

. Iron content and 

increased oxidative stress are two way process i.e. 

higher iron content can induce increased oxidative 

stress and higher oxidative stress can in turn 

increase iron content too. Iron is release from 

ferritin by the action of superoxide anions, from 

iron-sulfur proteins via the action of peroxynitritie 

and from heme compounds by the action of 

peroxidase 
(72) (73) (74)

.  

Exposure to excess iron via different routes (oral 

or parenteral) can increase the risk of PD as well. 

Kaur et al. 2007, conducted an experiment on 

mice, the results of which showed that increased 

oral intake of iron during early stages of life made 

the mice more susceptible to develop PD later in 

their life. Such mice developed symptoms of 

dopamine deficiency by the time they reached 12 

months and showed significant loss of nigral 

neurons by the time they were 24 months old. 

Moreover, the brain of such mice showed 

increased vulnerability to oxidative stress induced 

injury 
(75)

. Similar results were obtained when iron 

was given orally or was injected within SN of 

mice. The higher level of iron in SN resulted in 

reduced levels of GSH and increased levels of 

hydroxyl radicals 
(76)

. When iron chelators, like 

desferrioxamine, are given intramuscularly, they 

result in significant reduction in brain iron level 

and exert a neuro-protective effect against MPTP 

and iron in mice models 
(77)

. All these evidences 

cumulatively suggest that increased iron in the SN 

is an important trigger for oxidative stress and 

resultant neuro-degeneration in PD.  

 

Aluminum 

Aluminum is a non-redox metal that is well 

known to have profound relation in the 

pathogenesis of several neurodegenerative 

diseases 
(78) (79)

. The X-ray microanalysis of brains 

of patients with PD showed increased level of two 

metals in SN: one metal being iron and other 

being Aluminum 
(80)

.  

Although, aluminum is a non-redox metal, it is 

believed to contribute in the pathogenesis of PD 

and other neurodegenerative disorder through 

multiple mechanisms 
(81)

. The main mechanism 

through which aluminum seems to increase 

oxidative stress is by increasing iron induced 

oxidative stress. Aluminum brings alterations in 

membrane structure, which increases the 
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susceptible of membrane to undergo iron induced 

peroxidation 
(82)

. However, aluminum can induce 

membrane oxidation through a mechanism 

independent of iron too
(83)

. Another mechanism 

through aluminum contributes to increased 

oxidative stress in brain, independent of iron, is 

through the increased oxidation of NADPH 
(84)

. 

Not only that, but aluminum also contributes to 

oxidative stress in PD by increasing the 

production of hydroxyl oxygen species through a 

mechanism independent of iron 
(85)

. In fact, in 

aluminum induced brain injury, nitric oxide (NO) 

comes into play, which interacts with superoxide 

anions to form peroxynitrite anions that are even 

more toxic than simple hydroxyl anions 
(86)

. Like 

iron, another mechanism through which aluminum 

might induce oxidative stress mediated damage in 

through mitochondrial dysfunction. This maybe 

the result of dysfunction of mitochondrial 

enzymes like cytochrome c oxidase (COX) and 

Complex I
(87)

. Not only that, aluminum seems to 

increase oxidative stress by decreasing the level of 

different antioxidants as well. Anuradha et al. 

2014, demonstrated that sub-acute exposure of 

rats to aluminum causes significant reduction in 

the level of GSH and activity of SOD, CAT, and 

glutathione peroxidase (GPx)
(88)

.  

Moreover, occupational exposure to aluminum is 

a risk factor for PD 
(89)

. In fact, there have been 

some case reports were exposure to aluminum 

compounds was linked with disequilibrium of 

dopaminergic system 
(90)

. Furthermore, results 

obtained from animal models have suggested that 

intra-peritoneal injections of aluminum chloride 

can increase oxidative stress and resultant 

neuronal loss in areas of brain stem 
(91)

. All these 

evidence suggest that both oral and parenteral 

exposure to aluminum maybe a risk factor for 

increased oxidative stress and disequilibrium of 

dopaminergic system of brain.  

 

Copper 

Copper is another metal that has been linked with 

PD. The link of copper with PD is particularly 

interesting. Unlike iron and aluminum, the 

concentration of copper in SN decreases 

significantly. It has been repeatedly demonstrated 

that patients with PD always have higher iron in 

their SN and lower level of copper 
(92) (93)

. This 

apparent paradox can be explained on the basis of 

copper-dependent ferroxidase system activity. 

Ferroxidase promotes the conversion of Fe+2 into 

Fe+3, so that it can be moved out of the cells. The 

activity of ferroxidase is controlled by copper 
(94)

. 

But, the activity of ferroxidase is found to 

diminish greatly both within the plasma and 

cerebrospinal fluid (CSF) of patients with PD 
(95) 

(96) (97)
. Therefore, it is quite possible that 

decreased concentration of copper in SN is the 

consequence of defective function of ferroxidase 

(98)
.  

As for copper induced oxidative stress, it seems to 

be the result of a mechanism similar to iron. 

Copper catalyzes the conversion of hydrogen 

peroxide into hydroxyl group through this reaction 

(Cu+ + H2O2↔ Cu++ + OH− + OH) 
(99)

. Alpha-

Synuclein is a protein of unknown significance 

that is found in higher concentrations in the form 

of Lewy bodies within the brains of PD patients 

(100)
. These proteins bind with copper to enhance 
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their redox capacity. After that, this complex 

produces H2O2 from ascorbic acid. This H2O2 

then triggers the oxidation of dopamine and 

production of more neurotoxic metabolites 
(101)

. 

As for lipid peroxidation, copper causes oxidative 

stress mediated damage to membranes through 

both iron dependent and independent mechanisms 

(102) (103)
. Although copper is an essential cofactor 

for several mitochondrial enzymes, but its 

overload may cause mitochondrial dysfunction 

too. Copper overload has been linked with 

complex IV (cytochrome C oxidase, COX 

complex) dysfunction 
(104)

. The Cu-Alpha-

Synuclein complex also seems to decrease the 

level of antioxidants like GSH 
(101)

. In addition, 

the malfunction ceruloplasmin (a potent antioxi-

dant) has been reported in patients with PD 
(105)

.  

Several studies have declared copper to as a risk 

factor for PD 
(106) (107)

. On the other hand, there are 

some studies were exposure to copper and risk for 

PD was barely of statistical significance 
(108)

. 

More research may be needed in this area.  

 

Table 1: Summary of metal exposure and PD pathology 

Metal Brain levels 

(SN) 

Major reaction for 

ROS generation 

Mitochondrial 

dysfunction 

Lipid 

peroxidation 

Decrease/malfunctio

n in Antioxidant 

activity 

Iron Increased Fenton’s reaction Complex I and 

IV 

Independent 

mechanism 

GSH 

Aluminum Increased Iron induced and 

peroxynitrites 

Complex I and 

IV 

Iron induced and 

independent 

mechanism 

GSH, SOD, CAT, 

GPx 

Copper Decreased Fenton’s reaction Complex IV Iron induced and 

independent 

mechanism 

Ceruloplasmin, GSH 

GSH: Glutathione, SOD: Superoxide dismutase, CAT: Catalase, GPx: Glutathione peroxidase.  

 

Conclusion 

From this review it can be safely concluded that 

increased exposure to the aforementioned metals 

could be a marker or at least an important risk 

factor for the development of PD. Increase in the 

oxidative stress is perhaps the key mechanisms 

through which these metals disturb SN 

dopaminergic neurons and their functioning in 

PD. Therefore, interventions that could 

specifically target different mechanisms that  

 

reduce oxidative stress can be an effective tool in 

the fight against PD, which are still largely treated 

symptomatically. Moreover, devising the cut off 

limits to the exposure to the aforementioned 

metals may provide valuable results too.  

However, it must also be kept in mind here is 

whether domestic exposure to these metals poses 

similar threat of developing PD as occupational or 

experimental exposure do is still a matter of 

debate. More research is needed in this area.  
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